Allan, A.C.; Hellens, R.P.; Laing, W.A. MYB transcription factors that colour our fruit. Trends Plant Sci. 2008, 13, 99-101 Ben-Meir, H.; Zuker, A.; Weiss, D.; Vainstein, A. Molecular control of floral pigmentation: anthocyanins. In Breeding for Ornamentals: Classical and Molecular Approaches; 2002; pp. 253-272 Bernstein, L.E.; Burns, C.; Drumm, M.; Gaughan, S.; Sailer, M.; Baker, P.R. Impact on isoleucine and valine supplementation when decreasing use of medical food in the nutritional management of methylmalonic acidemia. Nutrients 2020, 12, https://doi.org/10.3390/nu12020473 Boileau, T.W.M.; Boileau, A.C.; Erdman, J.W. Bioavailability of all-trans and cis-isomers of lycopene. In Proceedings of the Experimental Biology and Medicine; Society for Experimental Biology and Medicine, 2002; Vol. vol. 227, pp. 914-919 Cheng, B.; Furtado, A.; Henry, R.J. Long-read sequencing of the coffee bean transcriptome reveals the diversity of full-length transcripts. GigaScience 2017, 6, https://doi.org/10.1093/gigascience/gix086 Cheng, B.; Furtado, A.; Henry, R.J. The coffee bean transcriptome explains the accumulation of the major bean components through ripening. Sci. Rep. 2018, 8, https://doi.org/10.1038/s41598-018-29842-4 Cheng, B.; Furtado, A.; Smyth, H.E.; Henry, R.J. Influence of genotype and environment on coffee quality. Trends Food Sci. Technol. 2016, 57, 20-30 Clevidence, B.; Paetau, I.; Smith, J.C. Bioavailability of Carotenoids from Vegetables; 2000; Vol. vol. 35; Cui, X.; Deng, J.; Huang, C.; Tang, X.; Li, X.; Li, X.; Lu, J.; Zhang, Z. Transcriptomic analysis of the anthocyanin biosynthetic pathway reveals the molecular mechanism associated with purple color formation in dendrobium nestor. Life 2021, 11, 1-19, https://doi.org/10.3390/life11020113 Dai, J.; Gupte, A.; Gates, L.; Mumper, R.J. A comprehensive study of anthocyanin-containing extracts from selected blackberry cultivars: extraction methods, stability, anticancer properties and mechanisms. Food Chem. Toxicol. 2009, 47, 837-847, doi: 10.1016/j.fct.2009.01.016 Davis, A.P.; Tosh, J.; Ruch, N.; Fay, M.F. Growing coffee: psilanthus (Rubiaceae) subsumed on the basis of molecular and morphological data; implications for the size, morphology, distribution and evolutionary history of Coffea. Bot. J. Linn. Soc. 2011, 167, 357-377, https://doi.org/10.1111/j.1095-8339.2011.01177.x Denoeud, F.; Carretero-Paulet, L.; Dereeper, A.; Droc, G.; Guyot, R.; Pietrella, M.; Zheng, C.; Alberti, A.; Anthony, F.; Aprea, G.; et al. The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science 2014, 345, 1181-1184, https://doi.org/10.1126/science.1255274 Dubos, C.; Stracke, R.; Grotewold, E.; Weisshaar, B.; Martin, C.; Lepiniec, L. MYB transcription factors in Arabidopsis. Trends Plant Sci. 2010, 15, 573-581 Espley, R. v.; Hellens, R.P.; Putterill, J.; Stevenson, D.E.; Kutty-Amma, S.; Allan, A.C. Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J. 2007, 49, 414-427, https://doi.org/10.1111/j.1365-313X.2006.02964.x Falcone Ferreyra, M.L.; Rius, S.P.; Casati, P. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front. Plant Sci. 2012, 3, 1-15, https://doi.org/10.3389/fpls.2012.00222 Fenilli TAB, Reichardt K, Dourado-Neto D, Trivelin PCO, Favarin JL, Costa FMP, Bacchi.OOS. Growth, development, and fertilizer-15N recovery by the coffee plant. Sci. Agric. 2007, 64, 541-547 Fraser, P.D.; Pinto, M.E.S.; Holloway, D.E.; Bramley, P.M. Application of high-performance liquid chromatography with photodiode array detection to the metabolic profiling of plant isoprenoids. Plant J. 2008, 24, 551-558, https://doi.org/10.1111/j.1365-313x.2000.00896.x Fu, C.C.; Han, Y.C.; Fan, Z.Q.; Chen, J.Y.; Chen, W.X.; Lu, W.J.; Kuang, J.F. The papaya transcription factor CpNAC1 modulates carotenoid biosynthesis through activating phytoene desaturase genes CpPDS2/4 during fruit ripening. J. Agric. Food Chem. 2016, 64, 5454-5463, doi: 10.1021/acs.jafc.6b01020 Furtado, M.B.; Wilmanns, J.C.; Chandran, A.; Tonta, M.; Biben, C.; Eichenlaub, M.; Coleman, H.A.; Berger, S.; Bouveret, R.; Singh, R.; et al. A novel conditional mouse model for NKX2-5 reveals transcriptional regulation of cardiac ion channels. Differentiation 2015, 91, 29-41, doi: 10.1016/j.diff.2015.12.003 Garcia-Gomez, B.E.; Salazar, J.A.; Nicolas-Almansa, M.; Razi, M.; Rubio, M.; Ruiz, D.; Martinez-Gomez, P. Molecular bases of fruit quality in prunus species: an integrated genomic, transcriptomic, and metabolic review with a breeding perspective. Int. J. Mol. Sci. 2021, 22, 1-38 Geleta, M., Herrera, I., Monzón, A., et al., 2012. Genetic diversity of Arabica coffee (Coffea arabica L.) in Nicaragua as estimated by simple sequence repeat markers. Sci. World J. 2012, 939820. https://doi.org/10.1100/2012/939820 Guo, W.H.; Tu, C.Y.; Hu, C.H. Cis-trans isomerizations of β-carotene and lycopene: a theoretical study. J. Phys. Chem. B 2008, 112, 12158-12167, https://doi.org/10.1021/jp8019705 Y Hao, E.O.G.C.Z.L.Z.W. Interactions between HLH and BHLH factors modulate light-regulated plant development. Mol. Plant 2012, 5, 688-697, https://doi.org/10.1093/mp/sss011 Heberle, H.; Meirelles, V.G.; da Silva, F.R.; Telles, G.P.; Minghim, R. InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinf. 2015, 16, 169, https://doi.org/10.1186/s12859-015-0611-3 Holton, T.A.; Cornish, E.C. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 1995, 7, 1071-1083, https://doi.org/10.1105/tpc.7.7.1071 M Ikeda, N.M.M.O.-T. ATBS1 INTERACTING FACTORs negatively regulate Arabidopsis cell elongation in the triantagonistic BHLH system. Plant Signal. Behav. 2013, 8, e23448, https://doi.org/10.4161/psb.23448 Inbaraj, B.S.; Lu, H.; Hung, C.F.; Wu, W.B.; Lin, C.L.; Chen, B.H. Determination of carotenoids and their esters in fruits of lycium barbarum linnaeus by HPLC-DAD-APCI-MS. J. Pharmaceut. Biomed. Anal. 2008, 47, 812-818, doi: 10.1016/j.jpba.2008.04.001 International Coffee Organization Trade Statistics. Available online: http://www.ico.org/trade_statistics.asp?section=Statistics. (accessed on 24 May 2021) Ivamoto, S.T.; Reis, O.; Domingues, D.S.; dos Santos, T.B.; de Oliveira, F.F.; Pot, D.; Leroy, T.; Vieira, L.G.E.; Carazzolle, M.F.; Pereira, G.A.G.; et al. Transcriptome analysis of leaves, flowers and fruits perisperm of Coffea arabica L. Reveals the differential expression of genes involved in raffinose biosynthesis. PLoS One 2017, 12, doi: 10.1371/journal.pone.0169595 Jian, W.; Cao, H.; Yuan, S.; Liu, Y.; Lu, J.; Lu, W.; Li, N.; Wang, J.; Zou, J.; Tang, N.; et al. SlMYB75, an MYB-type transcription factor, promotes anthocyanin accumulation and enhances volatile aroma production in tomato fruits. Hortic. Res 2019, 6, https://doi.org/10.1038/s41438-018-0098-y Jiang, S.; Sun, Q.; Zhang, T.; Liu, W.; Wang, N.; Chen, X. MdMYB114 regulates anthocyanin biosynthesis and functions downstream of MdbZIP4-like in apple fruit. J. Plant Physiol. 2021, 257, 153353, doi: 10.1016/j.jplph.2020.153353 Kanehisa, M.; Goto, S. KEGG: kyoto Encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27-30, https://doi.org/10.1093/nar/28.1.27 Kanehisa, M.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016, 32, 277-280, https://doi.org/10.1093/nar/gkv1070 Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61 Knevitt, D. Characterising Chlorogenic Acid Biosynthesis in Coffee; 2016; Koseki, M., Goto, K., Masuta, C., and Kanazawa, A. The star-type color pattern in petunia hybrid ‘red star’ flowers is induced by sequence-specific degradation of chalcone synthase RNA. Plant Cell Psysiol. 205AD, 46, 1879-1883 Kumar, V.; Yadav, S.K. Overexpression of CsANR increased flavan-3-ols and decreased anthocyanins in transgenic tobacco. Mol. Biotechnol. 2013, 54, 426-435, https://doi.org/10.1007/s12033-012-9580-1 Lai, B.; Li, X.-J.; Hu, B.; Qin, Y.-H.; Huang, X.-M.; Wang, H.-C.; Hu, G.-B.; Liu, J.-H. LcMYB1 is a key determinant of differential anthocyanin accumulation among genotypes, tissues, developmental phases and ABA and light stimuli in litchi chinensis., doi: 10.1371/journal.pone.0086293 Langfelder, P.; Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinf. 2008, 9, https://doi.org/10.1186/1471-2105-9-559 Li, J.; Li, G.; Gao, S.; Martinez, C.; He, G.; Zhou, Z.; Huang, X.; Lee, J.H.; Zhang, H.; Shen, Y.; et al. Arabidopsis transcription factor ELONGATED HYPOCOTYL5 plays a role in the feedback regulation of phytochrome a signaling. Plant Cell 2010, 22, 3634-3649, https://doi.org/10.1105/tpc.110.075788 Licausi, F.; Ohmehmeblast Shimizu, T.; Kishi-Kaboshi, M. AP2/ERF transcription factors: mediators of stress responses and developmental programs. New Phytol. 2013, 199, 639-649 Liu, L.; Shao, Z.; Zhang, M.; Wang, Q. Regulation of carotenoid metabolism in tomato. Mol. Plant 2014, https://doi.org/10.1093/mp/ssu121 Lloyd, A.; Brockman, A.; Aguirre, L.; Campbell, A.; Bean, A.; Cantero, A.; Gonzalez, A. Advances in the MYB-BHLH-WD repeat (MBW) pigment regulatory model: addition of a WRKY factor and Co-option of an anthocyanin MYB for betalain regulation. Plant Cell Physiol. 2017, 58, 1431-1441, https://doi.org/10.1093/pcp/pcx075 Lohse, M.; Nagel, A.; Herter, T.; May, P.; Schroda, M.; Zrenner, R.; Tohge, T.; Fernie, A.R.; Stitt, M.; Usadel, B. Mercator: a Fast and simple Web server for genome scale functional annotation of plant sequence data. Plant Cell Environ. 2014, 37, 1250-1258, https://doi.org/10.1111/pce.12231 Lopes CT, Max F, Farzana K, Donaldson SL, Quaid M, Bader.GD. Cytoscape Web: an interactive web-based network browser. Bioinformatics 2010, 26, 2347-2348, doi: https://doi.org/10.1093/bioinformatics/btq430 Lu, S.; Zhang, Y.; Zhu, K.; Yang, W.; Ye, J.; Chai, L.; Xu, Q.; Deng, X. The Citrus transcription factor CsMADS6 modulates carotenoid metabolism by directly regulating carotenogenic genes. Plant Physiol. 2018, 176, 2657-2676, https://doi.org/10.1104/pp.17.01830 Machemer, K. Interplay of MYB factors in differential cell expansion, and consequences for tomato fruit development. Plant J. 2011, 68, 337-350, https://doi.org/10.1111/j.1365-313x.2011.04690.x Malien-Aubert, C.; Dangles, O.; Amiot, M.J. Color stability of commercial anthocyanin-based extracts in relation to the phenolic composition. Protective effects by intra- and intermolecular copigmentation. J. Agric. Food Chem. 2001, 49, 170-176, https://doi.org/10.1021/jf000791o Mercadante, A.Z. 2019. Carotenoid esters in foods: physical, chemical and biological properties, In: Food chemistry, function and analysis, vol. 13. Royal Society of Chemistry, UK. https://www.worldcat.org/title/carotenoid-esters-in-foods-physical-chemical-and-biological-properties/oclc/1112235716 Mekbib, Y.; Saina, J.K.; Tesfaye, K.; Eshetu, G.; Hu, G. Chloroplast genome sequence variations and development of polymorphic markers in Coffea arabica. Plant Mol. Biol. Rep. 2020 Mishra, M.K.; Slater, A. Recent advances in the genetic transformation of coffee. Biotechnol. Res. Int. 2012, 2012, 1-17, https://doi.org/10.1155/2012/580857 Mitsis, T.; Efthimiadou, A.; Bacopoulou, F.; Vlachakis, D.; Chrousos, G.; Eliopoulos, E. Transcription factors and evolution: an integral part of gene expression (review). World Acad. Sci. J. 2020, 2, 3-8, https://doi.org/10.3892/wasj.2020.32 Mofatto, L.S.; Carneiro, F. de A.; Vieira, N.G.; Duarte, K.E.; Vidal, R.O.; Alekcevetch, J.C.; Cotta, M.G.; Verdeil, J.L.; Lapeyre-Montes, F.; Lartaud, M.; et al. Identification of candidate genes for drought tolerance in coffee by high-throughput sequencing in the shoot apex of different Coffea arabica cultivars. BMC Plant Biol. 2016, 16, https://doi.org/10.1186/s12870-016-0777-5 Neto AP, Favarin JL, de Almeida REM, dos Santos Dias CT, Tezotto T, Alves ALG, Moraes.MF. Changes of nutritional status during a phenological cycle of coffee under high nitrogen supply by fertigation. Commun. Soil Sci. Plant Anal. 2011, 42, 2414-2425 Petropoulos, S.A.; Sampaio, S.L.; di Gioia, F.; Tzortzakis, N.; Rouphael, Y.; Kyriacou, M.C.; Ferreira, I. Grown to Be blue-antioxidant properties and health effects of colored vegetables. Part I: root vegetables. Antioxidants 2019, 8, 617 Rashid, M. I., Fareed, M. I., Rashid, H., Aziz, H., Ehsan, N., Khalid, S., Ghaffar, I., Ali, R., Gul, A., & Hakeem, K.R. Flavonoids and their biological secrets. In Plant and Human Health: Phytochemistry and Molecular Aspects; 2019; pp. 579-605 Reis AR, Favarin JL, Gallo LA, Malavolta E, Moraes MF, Lavres.JJ. Nitrate reductase and glutamine synthetase activity in coffee leaves during fruit development. Rev. Bras. Ciencia do Solo 2009, 33, 315-324 Riechmann, J.L.; Heard, J.; Martin, G.; Reuber, L.; Jiang, C.Z.; Keddie, J.; Adam, L.; Pineda, O.; Ratcliffe, O.J.; Samaha, R.R.; et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 2000, 290, 2105-2110, https://doi.org/10.1126/science.290.5499.2105 Rodríguez-Villaló, A.; Gas, E.; Rodríguez-Concepció, M. Phytoene Synthase Activity Controls the Biosynthesis of Carotenoids and the Supply of Their Metabolic Precursors in Dark-Grown Arabidopsis Seedlings., https://doi.org/10.1111/j.1365-313X.2009.03966.x Ruiz-Sola, M.A.; Rodriguez-Concepcion, M. Carotenoid biosynthesis in Arabidopsis: a colorful pathway. Arabidopsis Book 2012, 10, e0158, https://doi.org/10.1199/tab.0158 Sagio, S.A.; Lima, A.A.; Barreto, H.G.; de Carvalho, C.H.S.; Paiva, L.V.; Chalfun-Junior, A. Physiological and molecular analyses of early and late Coffea arabica cultivars at different stages of fruit ripening. Acta Physiol. Plant. 2013, 35, 3091-3098, https://doi.org/10.1007/s11738-013-1342-6 Sant'Ana, G.C.; Pereira, L.F.P.; Pot, D.; Ivamoto, S.T.; Domingues, D.S.; Ferreira, R. v.; Pagiatto, N.F.; da Silva, B.S.R.; Nogueira, L.M.; Kitzberger, C.S.G.; et al. Genome-wide association study reveals candidate genes influencing lipids and diterpenes contents in Coffea arabica L. Sci. Rep. 2018, 8, https://doi.org/10.1038/s41598-017-18800-1 Stanley, L.; Yuan, Y.W. Transcriptional regulation of carotenoid biosynthesis in plants: so many regulators, so little consensus. Front. Plant Sci. 2019, 10, 1017 Takos, A.M.; Jaffe, F.W.; Jacob, S.R.; Bogs, J.; Robinson, S.P.; Walker, A.R. Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol. 2006, 142, 1216-1232, https://doi.org/10.1104/pp.106.088104 Tanaka, Y.; Sasaki, N.; Ohmiya, A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J. 2008, 54, 733-749 Toledo-Ortiz, G.; Huq, E.; Rodriguez-Concepcion, M. Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interacting factors. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 11626-11631, https://doi.org/10.1073/pnas.0914428107 Tran, H.T.M.; Ramaraj, T.; Furtado, A.; Lee, L.S.; Henry, R.J. Use of a draft genome of coffee (Coffea arabica) to identify SNPs associated with caffeine content. Plant Biotechnol. J. 2018, 16, 1756-1766, https://doi.org/10.1111/pbi.12912 Ullah, I.; Magdy, M.; Wang, L.; Liu, M.; Li, X. Genome-wide identification and evolutionary analysis of TGA transcription factors in soybean. Sci. Rep. 2019, 9, 11186, https://doi.org/10.1038/s41598-019-47316-z Usadel, B.; Poree, F.; Nagel, A.; Lohse, M.; Czedik-Eysenberg, A.; Stitt, M. A guide to using MapMan to visualize and compare omics data in plants: a case study in the crop species, maize. Plant Cell Environ. 2009, 32, 1211-1229, https://doi.org/10.1111/j.1365-3040.2009.01978.x Varaud, E.; Brioudes, F.; Szecsi, J.; Leroux, J.; Brown, S.; Perrot-Rechenmann, C.; Bendahmane, M. AUXIN RESPONSE FACTOR8 regulates Arabidopsis petal growth by interacting with the BHLH transcription factor BIGPETALp. Plant Cell 2011, 23, 973-983, https://doi.org/10.1105/tpc.110.081653 Verweij, W.; Spelt, C.E.; Bliek, M.; de Vries, M.; Wit, N.; Faraco, M.; Koes, R.; Quattrocchio, F.M. Functionally similar WRKY proteins regulate vacuolar acidification in petunia and hair development in Arabidopsis. Plant Cell 2016, 28, 786-803, https://doi.org/10.1105/tpc.15.00608 Wan, H.; Yu, C.; Han, Y.; Guo, X.; Luo, L.; Pan, H.; Zheng, T.; Wang, J.; Cheng, T.; Zhang, Q. Determination of flavonoids and carotenoids and their contributions to various colors of rose cultivars (rosa spp.). Front. Plant Sci. 2019, 10, 123, https://doi.org/10.3389/fpls.2019.00123 Wang, C.C.; Chang, S.C.; Inbaraj, B.S.; Chen, B.H. Isolation of carotenoids, flavonoids and polysaccharides from lycium barbarum L. And evaluation of antioxidant activity. Food Chem. 2010, 120, 184-192, doi: 10.1016/j.foodchem.2009.10.005 Welsch, R.; Beyer, P.; Hugueney, P.; Kleinig, H.; von Lintig, J. Regulation and activation of phytoene synthase, a key enzyme in carotenoid biosynthesis, during photomorphogenesis. Planta 2000, 211, 846-854 Welsch, R.; Maass, D.; Voegel, T.; DellaPenna, D.; Beyer, P. Transcription factor RAP2.2 and its interacting partner SINAT2: stable elements in the carotenogenesis of Arabidopsis leaves. Plant Physiol. 2007, 145, 1073-1085, https://doi.org/10.1104/pp.107.104828 Wieruszewski, J.B. Astaxanthin Bioavailability, Retention Efficiency and Kinetics in Atlantic Salmon (Salmo Salar) as Influenced by Pigment Concentration and Method of Administration (Kinetics Only), Ottawa, 2002 Xu, Q.; He, J.; Dong, J.; Hou, X.; Zhang, X. Genomic survey and expression profiling of the MYB gene family in watermelon. Hortic. Plant J. 2018, 4, 1-15, https://doi.org/10.1016/j.hpj.2017.12.001 Yahia, E.M.; de Jesus Ornelas-Paz, J.; Emanuelli, T.; Jacob-Lopes, E.; Zepka, L.Q.; Cervantes-Paz, B. Chemistry, stability, and biological actions of carotenoids. In Fruit and Vegetable Phytochemicals: Chemistry and Human Health: second ed.; Wiley Blackwell, 2017; Vol. vol. 1, pp. 285-345 ISBN 9781119158042 Yan, H.; Kerr, W.L. Total phenolics content, anthocyanins, and dietary fiber content of apple pomace powders produced by vacuum-belt drying. J. Sci. Food Agric. 2013, 93, 1499-1504, https://doi.org/10.1002/jsfa.5925 Ye, J.; Hu, T.; Yang, C.; Li, H.; Yang, M.; Ijaz, R.; Ye, Z.; Zhang, Y. Transcriptome profiling of tomato fruit development reveals transcription factors associated with ascorbic acid, carotenoid and flavonoid biosynthesis. PLoS One 2015, 10, e0130885, doi: 10.1371/journal.pone.0130885 Yuan, H.; Zhang, J.; Nageswaran, D.; Li, L. Carotenoid metabolism and regulation in horticultural crops. Hortic. Res 2015, 2, 1-11 Yuyama, P.M.; Reis Junior, O.; Ivamoto, S.T.; Domingues, D.S.; Carazzolle, M.F.; Pereira, G.A.G.; Charmetant, P.; Leroy, T.; Pereira, L.F.P. Transcriptome analysis in Coffea eugenioides, an arabica coffee ancestor, reveals differentially expressed genes in leaves and fruits. Mol. Genet. Genom. 2016, 291, 323-336, https://doi.org/10.1007/s00438-015-1111-x Zhang, Y.; Chen, G.; Dong, T.; Pan, Y.; Zhao, Z.; Tian, S.; Hu, Z. Anthocyanin accumulation and transcriptional regulation of anthocyanin biosynthesis in purple bok choy (Brassica rapa var. Chinensis). J. Agric. Food Chem. 2014, 62, 12366-12376, https://doi.org/10.1021/jf503453e Zhang, H.; Zhang, S.; Zhang, H.; Chen, X.; Liang, F.; Qin, H.; Zhang, Y.; Cong, R.; Xin, H.; Zhang, Z. Carotenoid metabolite and transcriptome dynamics underlying flower color in marigold (Tagetes erecta L.). Sci. Rep. 2020, 10, https://doi.org/10.1038/s41598-020-73859-7 Zhao, Y.; Dong, W.; Wang, K.; Zhang, B.; Allan, A.C.; Lin-Wang, K.; Chen, K.; Xu, C. Differential sensitivity of fruit pigmentation to ultraviolet light between two peach cultivars. Front. Plant Sci. 2017, 8, 1552, https://doi.org/10.3389/fpls.2017.01552 Zhi, J.; Liu, X.; Li, D.; Huang, Y.; Yan, S.; Cao, B.; Qiu, Z. CRISPR/Cas9-Mediated SlAN2 mutants reveal various regulatory models of anthocyanin biosynthesis in tomato plant. Plant Cell Rep. 2020, https://doi.org/10.1007/s00299-020-02531-1 Zhou, D.; Shen, Y.; Zhou, P.; Fatima, M.; Lin, J.; Yue, J.; Zhang, X.; Chen, L.Y.; Ming, R. Papaya CpbHLH1/2 regulate carotenoid biosynthesis-related genes during papaya fruit ripening. Hortic. Res 2019, 6, 80, https://doi.org/10.1038/s41438-019-0162-2 Z Zhu, G.C.X.G.W.Y.X.Y.J.H.Z.H. Overexpression of SlPRE2, an atypical BHLH transcription factor, affects plant morphology and fruit pigment accumulation in tomato. Sci. Rep. 2017, 7, 5786, https://doi.org/10.1038/s41598-017-04092-y Zhu, F.; Luo, T.; Liu, C.; Wang, Y.; Yang, H.; Yang, W.; Zheng, L.; Xiao, X.; Zhang, M.; Xu, R.; et al. An R2R3-MYB transcription factor represses the transformation of α- and β-branch carotenoids by negatively regulating expression of CrBCH2 and CrNCED5 in flavedo of Citrus reticulate. New Phytol. 2017, 216, https://doi.org/10.1111/nph.14684 Zhuang, H.; Lou, Q.; Liu, H.; Han, H.; Wang, Q.; Tang, Z.; Ma, Y.; Wang, H. Differential regulation of anthocyanins in green and purple turnips revealed by combined de Novo transcriptome and metabolome analysis. Int. J. Mol. Sci. 2019, 20, https://doi.org/10.3390/ijms20184387 |