Ahmed, I., Matthews, P.J., Biggs, P.J., et al., 2013. Identification of chloroplast genome loci suitable for high-resolution phylogeographic studies of Colocasia esculenta(L.) Schott (Araceae) and closely related taxa. Mol. Ecol. Resour. 13, 929-937.https://doi.org/10.1111/1755-0998.12128. Amar, M.H., 2020. ycf1-ndhF genes, the most promising plastid genomic barcode, sheds light on phylogeny at low taxonomic levels in Prunus persica. J. Genet. Eng. Biotechnol. 18, 42. https://doi.org/10.1186/s43141-020-00057-3. Beier, S., Thiel, T., Münch, T., et al., 2017. MISA-web: a web server for microsatellite prediction. Bioinformatics 33, 2583-2585. https://doi.org/10.1093/bioinformatics/btx198. Bentham, G., 1880. Laurineae. Genera plantarum 3, 146-168. Bouckaert, R., Heled, J., Kuhnert, D., et al., 2014. Beast 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537. https://doi.org/10.1371/journal.pcbi.1003537. Chanderbali, A.S., Van Der Werff, H., Renner, S.S., 2001. Phylogeny and historical biogeography of Lauraceae: evidence from the chloroplast and nuclear genomes. Ann. Mo. Bot. Gard. 88, 104-134. https://doi.org/10.2307/2666133. Chen, C., Chen, H., Zhang, Y., et al., 2020. TBtools - an integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 13, 1194-1202. https://doi.org/10.1016/j.molp.2020.06.009. Chen, Z., Hu, F., Wang, X., et al., 2017. Analysis of codon usage bias of Ananas comosus with genome sequencing data. J. Fruit Sci. 34, 946-955. https://doi.org/10.13925/j.cnki.gsxb.20160375. Doyle, J.J., Dickson, E.E., 1987. Preservation of plant samples for DNA restriction endonuclease analysis. Taxon 36, 715-722. https://doi.org/10.2307/1221122. Drescher, A., Ruf, S., Jr, T.C., et al., 2000. The two largest chloroplast genome-encoded open reading frames of higher plants are essential genes. Plant J. 22, 97-104. Du, X., Zeng, T., Feng, Q., et al., 2020. The complete chloroplast genome sequence of yellow mustard (Sinapis alba L.) and its phylogenetic relationship to other Brassicaceae species. Gene 731, 144340. https://doi.org/10.1016/j.gene.2020.144340. Fijridiyanto, I.A., Murakami, N., 2009a. Molecular systematics of malesian Litsea lam. And putative related genera (Lauraceae). Acta Phytotaxon. Geobot. 60, 1-18. https://doi.org/10.18942/apg.KJ00005576218. Fijridiyanto, I.A., Murakami, N., 2009b. Phylogeny of Litsea and related genera(Laureae-Lauraceae) based on analysis of rpb2 gene sequences. J. Plant Res. 122, 283-298. https://doi.org/10.1007/s10265-009-0218-8. Gao, L.Z., Liu, Y.L., Zhang, D., et al., 2019. Evolution of Oryza chloroplast genomes promoted adaptation to diverse ecological habitats. Commun. Biol. 2, 278.https://doi.org/10.1038/s42003-019-0531-2. Greiner, S., Lehwark, P., Bock, R., 2019. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 47, W59eW64. https://doi.org/10.1093/nar/gkz238. Henriquez, C.L., Abdullah, Ahmed, I., et al., 2020. Molecular evolution of chloroplast genomes in Monsteroideae (Araceae). Planta 251, 72. https://doi.org/10.1007/s00425-020-03365-7. Hinsinger, D.D., Strijk, J.S., 2017. Toward phylogenomics of Lauraceae: the complete chloroplast genome sequence of Litsea glutinosa (Lauraceae), an invasive tree species on Indian and Pacific Ocean islands. Plant Gene 9, 71-79.https://doi.org/10.1016/j.plgene.2016.08.002. Iram, S., Hayat, M.Q., Tahir, M., et al., 2019. Chloroplast genome sequence of Artemisia scoparia: comparative analyses and screening of mutational hotspots. Plants 8, 476. https://doi.org/10.3390/plants8110476. Jiao, L., Yu, M., Wiedenhoeft, A.C., et al., 2018. DNA barcode authentication and library development for the wood of six commercial Pterocarpus species: the critical role of xylarium specimens. Sci. Rep. 8, 1945.https://doi.org/10.1038/s41598-018-20381-6. Jin, J.J., Yu, W.B., Yang, J.B., et al., 2020. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21, 241. https://doi.org/10.1186/s13059-020-02154-5. Jo, S., Kim, Y.K., Cheon, S.H., et al., 2019. Characterization of 20 complete plastomes from the tribe Laureae (Lauraceae) and distribution of small inversions. PLoS One 14, e0224622. https://doi.org/10.1371/journal.pone.0224622. Kamle, M., Mahato, D.K., Lee, K.E., et al., 2019. Ethnopharmacological properties and medicinal uses of Litsea cubeba. Plants 8, 150. https://doi.org/10.3390/plants8060150. Katoh, K., Rozewicki, J., Yamada, K.D., 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings Bioinf. 20, 1160-1166. https://doi.org/10.1093/bib/bbx108. Kearse, M., Moir, R., Wilson, A., et al., 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647-1649. https://doi.org/10.1093/bioinformatics/bts199. Kiktev, D.A., Sheng, Z., Lobachev, K.S., et al., 2018. GC content elevates mutation and recombination rates in the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 115, E7109eE7118. https://doi.org/10.1073/pnas.1807334115. Kumar, S., Stecher, G., Li, M., et al., 2018. Mega X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547-1549. https://doi.org/10.1093/molbev/msy096. Kurtz, S., Choudhuri, J.V., Ohlebusch, E., et al., 2001. REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 29, 4633-4642.https://doi.org/10.1093/nar/29.22.4633. Li, J., Christophel, D.C., 2000. Systematic relationships within the Litsea complex(Lauraceae): a cladistic analysis on the basis of morphological and leaf cuticle data. Aust. Syst. Bot. 13, 1-13. https://doi.org/10.1071/SB98015. Li, J., Christophel, D.C., Conran, J.G., et al., 2004. Phylogenetic relationships within the 'core' Laureae ( Litsea complex, Lauraceae) inferred from sequences of the chloroplast gene matK and nuclear ribosomal DNA ITS regions. Plant Syst. Evol. 246, 19-34. https://doi.org/10.1007/s00606-003-0113-z. Li, J., Conran, J.G., Christophel, D.C., et al., 2008. Phylogenetic relationships of the Litsea complex and core Laureae (Lauraceae) using ITS and ETS sequences and morphology. Ann. Mo. Bot. Gard. 95, 580-599. https://doi.org/10.3417/2006125.9504. Liang, H., Zhang, Y., Deng, J., et al., 2020. The complete chloroplast genome sequences of 14 Curcuma species: insights into genome evolution and phylogenetic relationships within Zingiberales. Front. Genet. 11, 802. https://doi.org/10.3389/fgene.2020.00802. Liu, C., Chen, H., Han, L., et al., 2020. The complete plastid genome of an evergreen tree Litsea elongata (Lauraceae: Laureae). Mitochondrial DNA B 5, 2483-2484.https://doi.org/10.1080/23802359.2020.1778566. Mehmood, F., Abdullah, Shahzadi, I., et al., 2020. Characterization of Withania somnifera chloroplast genome and its comparison with other selected species of Solanaceae. Genomics 112, 1522-1530. https://doi.org/10.1016/j.ygeno.2019.08.024. Minh, B.Q., Schmidt, H.A., Chernomor, O., et al., 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530-1534. https://doi.org/10.1093/molbev/msaa015. Munyao, J.N., Dong, X., Yang, J.X., et al., 2020. Complete chloroplast genomes of Chlorophytum comosum and Chlorophytum gallabatense: genome structures, comparative and phylogenetic analysis. Plants 9, 296.https://doi.org/10.3390/plants9030296. Muyle, A., Serres-Giardi, L., Ressayre, A., et al., 2011. GC-biased gene conversion and selection affect GC content in the Oryza genus (rice). Mol. Biol. Evol. 28, 2695-2706. https://doi.org/10.1093/molbev/msr104. Omelchenko, D.O., Krinitsina, A.A., Belenikin, M.S., et al., 2020. Complete plastome sequencing of Allium paradoxum reveals unusual rearrangements and the loss of the ndh genes as compared to Allium ursinum and other onions. Gene 726, 144154. https://doi.org/10.1016/j.gene.2019.144154. Rozas, J., Ferrer-Mata, A., Sánchez-Delbarrio, J.C., et al., 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299-3302. https://doi.org/10.1093/molbev/msx248. Song, Y., Yao, X., Tan, Y., et al., 2016. Complete chloroplast genome sequence of the avocado: gene organization, comparative analysis, and phylogenetic relationships with other Lauraceae. Can. J. For. Res. 46, 1293-1301. https://doi.org/10.1139/cjfr-2016-0199. Song, Y., Yu, W.B., Tan, Y., et al., 2017. Evolutionary comparisons of the chloroplast genome in Lauraceae and insights into loss events in the Magnoliids. Genome Biol. Evol. 9, 2354-2364. https://doi.org/10.1093/gbe/evx180. Song, Y., Yu, W.B., Tan, Y.H., et al., 2020. Plastid phylogenomics improve phylogenetic resolution in the Lauraceae. J. Syst. Evol. 58, 423-439. https://doi.org/10.1111/jse.12536. Tian, X., Ye, J., Song, Y., 2019. Plastome sequences help to improve the systematic position of trinerved Lindera species in the family Lauraceae. PeerJ 7, e7662. https://doi.org/10.7717/peerj.7662. Wang, J.H., Moore, M.J., Wang, H., et al., 2021. Plastome evolution and phylogenetic relationships among Malvaceae subfamilies. Gene 765. https://doi.org/10.1016/j.gene.2020.145103. Wang, Y.S., Wen, Z.Q., Li, B.T., et al., 2016. Ethnobotany, phytochemistry, and pharmacology of the genus Litsea: an update. J. Ethnopharmacol. 181, 66-107.https://doi.org/10.1016/j.jep.2016.01.032. Wen, F., Wu, X., Li, T., et al., 2021. The complete chloroplast genome of Stauntonia chinensis and compared analysis revealed adaptive evolution of subfamily Lardizabaloideae species in China. BMC Genom. 22, 161. https://doi.org/10.1186/s12864-021-07484-7. Wicke, S., Schneeweiss, G.M., Depamphilis, C.W., et al., 2011. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol. Biol. 76, 273-297. https://doi.org/10.1007/s11103-011-9762-4. Xiao, T., Xu, Y., Jin, L., et al., 2020. Conflicting phylogenetic signals in plastomes of the tribe Laureae (Lauraceae). PeerJ 8, e10155. https://doi.org/10.7717/peerj.10155. Xu, B., Yang, Z., 2013. PAMLX: a graphical user interface for PAML. Mol. Biol. Evol. 30, 2723-2724. https://doi.org/10.1093/molbev/mst179. Yadav, G., Goswami, B., 1990. Studies on the foliar constituents of food plants of muga silkworm (Antheraea assama Westwood). J. Ecobiol. 2, 222-228. Yang, J., Chiang, Y.C., Hsu, T.W., et al., 2021. Characterization and comparative analysis among plastome sequences of eight endemic Rubus (Rosaceae) species in Taiwan. Sci. Rep. 11, 1152. https://doi.org/10.1038/s41598-020-80143-1. Yao, X., Tan, Y.H., Yang, J.B., et al., 2019. Exceptionally high rates of positive selection on the rbcL gene in the genus Ilex (Aquifoliaceae). BMC Evol. Biol. 19, 192. https://doi.org/10.1186/s12862-019-1521-1. Zhang, Y., Tian, Y., Tng, D.Y.P., et al., 2021. Comparative chloroplast genomics of Litsea Lam. (Lauraceae) and its phylogenetic implications. Forests 12, 744. https://doi.org/10.3390/f12060744. Zhang, T., Zeng, C.X., Yang, J.B., et al., 2016. Fifteen novel universal primer pairs for sequencing whole chloroplast genomes and a primer pair for nuclear ribosomal DNAs. J. Syst. Evol. 54, 219-227. https://doi.org/10.1111/jse.12197. Zhao, M.L., Song, Y., Ni, J., et al., 2018. Comparative chloroplast genomics and phylogenetics of nine Lindera species (Lauraceae). Sci. Rep. 8, 8844. https://doi.org/10.1038/s41598-018-27090-0. Zheng, G., Wei, L., Ma, L., et al., 2020. Comparative analyses of chloroplast genomes from 13 Lagerstroemia (Lythraceae) species: identification of highly divergent regions and inference of phylogenetic relationships. Plant Mol. Biol. 102, 659-676. https://doi.org/10.1007/s11103-020-00972-6. |