Plant Diversity ›› 2023, Vol. 45 ›› Issue (03): 243-264.DOI: 10.1016/j.pld.2022.12.003
Mahasin Ali Khana, Sumana Mahatoa, Robert A. Spicerb,c, Teresa E.V. Spicerb, Ashif Alia, Taposhi Hazraa, Subir Berad
收稿日期:
2022-07-31
修回日期:
2022-12-05
发布日期:
2023-07-06
通讯作者:
Mahasin Ali Khan,E-mail:khan.mahasinali@gmail.com
基金资助:
Mahasin Ali Khana, Sumana Mahatoa, Robert A. Spicerb,c, Teresa E.V. Spicerb, Ashif Alia, Taposhi Hazraa, Subir Berad
Received:
2022-07-31
Revised:
2022-12-05
Published:
2023-07-06
Contact:
Mahasin Ali Khan,E-mail:khan.mahasinali@gmail.com
Supported by:
摘要: The Eastern Himalayas are renowned for their high plant diversity. To understand how this modern botanical richness formed, it is critical to investigate past plant biodiversity preserved as fossils throughout the eastern Himalayan Siwalik succession (middle Miocene-early Pleistocene). Here, we present a summary of plant diversity records that document Neogene floristic and climate changes. We do this by compiling published records of megafossil plant remains, because these offer better spatial and temporal resolution than do palynological records. Analyses of the Siwalik floral assemblages based on the distribution of the nearest living relative taxa suggest that a tropical wet evergreen forest was growing in a warm humid monsoonal climate at the deposition time. This qualitative interpretation is also corroborated by published CLAMP (Climate Leaf Analysis Multivariate Program) analyses. Here, we also reconstruct the climate by applying a new common proxy WorldClim2 calibration. This allows the detection of subtle climate differences between floral assemblages free of artefacts introduced by using different methodologies and climate calibrations. An analysis of the Siwalik floras indicates that there was a gradual change in floral composition. The lower Siwalik assemblages provide evidence of a predominance of evergreen elements. An increase in deciduous elements in the floral composition is noticed towards the close of the middle Siwalik and the beginning of the upper Siwalik formation. This change reflects a climatic difference between Miocene and Plio-Pleistocene times. This review helps us to understand under what paleoenvironmental conditions plant diversity occurred and evolved in the eastern Himalayas throughout the Cenozoic.
Mahasin Ali Khan, Sumana Mahato, Robert A. Spicer, Teresa E.V. Spicer, Ashif Ali, Taposhi Hazra, Subir Bera. Siwalik plant megafossil diversity in the Eastern Himalayas:A review[J]. Plant Diversity, 2023, 45(03): 243-264.
Mahasin Ali Khan, Sumana Mahato, Robert A. Spicer, Teresa E.V. Spicer, Ashif Ali, Taposhi Hazra, Subir Bera. Siwalik plant megafossil diversity in the Eastern Himalayas:A review[J]. Plant Diversity, 2023, 45(03): 243-264.
[1] Acharya, S.K., 1994. The Cenozoic foreland basin and tectonics of the eastern Sub-Himalaya:problem and prospects. Himal. Geol. 15, 3-21. [2] Acharyya, S.K., Bhatt, D.K., Sen, M.K., 1987. Earliest Miocene planktonic foraminifera from Kalijhora area, tista river section, Darjeeling sub-Himalaya. Ind. Miner. 41, 31-37. [3] Ambwani, K., 1992. Leaf impressions belonging to the Tertiary age of northeast India. Phytomorphology 41, 139-146. [4] Anand-Prakash, Singh, T., 2000. Nature, composition, rank (maturation) and depositional environment of Siwalik coals from Arunachal Himalaya. Mycol. Prog. 21, 17-29. [5] Antal, J.S., Awasthi, N., 1993. Fossil flora from the Himalayan foot-hills of Darjeeling district, West Bengal and its palaeoecological and phytogeographical significance. Palaeobotanist 42, 14-60. [6] Antal, J.S., Prasad, M., 1995. Fossil leaf of Clinogyne Salisb. From the siwalik sediments of Darjeeling district, West Bengal. Geophytology 24, 2412-2443. [7] Antal, J.S., Prasad, M., 1996a. Some more leaf-impressions from the Himalayan foothills of Darjeeling district, West Bengal, India. Palaeobotanist 43, 1-9. [8] Antal, J.S., Prasad, M., 1996b. Dipterocarpaceous fossil leaves from Grish River section in Himalayan foot hills near Oodlabari, Darjeeling district, West Bengal. Palaeobotanist 43, 73-77. [9] Antal, J.S., Prasad, M., 1996c. Leaf-impressions of Polyalthia Bl. in the siwalik sediments of Darjeeling district, West Bengal. Geophytology 26, 125-127. [10] Antal, J.S., Prasad, M., 1997. Angiospermous fossil leaves from the Siwalik sediments (Middle-Miocene) of Darjeeling district, West Bengal. Palaeobotanist 46, 95-104. [11] Antal, J.S., Prasad, M., 1998. Morphotaxonomic study of some more fossil leaves from the lower Siwalik sediments of West Bengal, India. Palaeobotanist 47, 86-98. [12] Antal, J.S., Prasad, M., Khare, E.G., 1996. Fossil woods from the Siwalik sediments of Darjeeling District, West Bengal, India. Palaeobotanist 43, 98-105. [13] Awasthi, N., Mehrotra, R.C., 1990. Some fossil woods from Tipam sandstone of Assam and Nagaland. Palaeobotanist 38, 277-234. [14] Awasthi, N., Mehrotra, R.C., 1997. Some fossil dicotyledonous woods from the Neogene of Arunachal Pradesh, India. Palaeontograph. Abteilung B 245, 109-121. [15] Baishya, A.K., Haque, S., Bora, P.J., et al., 2001. Flora of Arunachal Pradesh-an overview. Arunachal Floral News 19, 1-24. [16] Bande, M., Prakash, U., 1986. The Tertiary flora of Southeast Asia with remarks on its palaeoenvironment and phytogeography of the Indo-Malayan region. Rev. Paleobot. Palynol. 49, 203-233. [17] Bera, S., A. De, B. De. 2004. First record of Elaecarpus Linn. fruits from the upper siwalik sediments (Kimin formation) of Arunachal Pradesh, India. J. Geol. Soc. India 64, 350-352. [18] Bera, S., Gupta, S., Khan, M.A., et al., 2014. First megafossil evidence of Cyatheaceous tree fern from the Indian Cenozoic. J. Earth Syst. Sci. 123,1433-1438. [19] Bera, M., Khan, M.A., Bera, S., 2018. Two new species of Phomites fritel from the phyllosphere of siwalik. J. Mycopathol. Res. 56, 11-14. [20] Bera, M., Khan, M.A., Bera, S., 2019. A new foliicolous melioloid fungus from the Pliocene of eastern Himalaya. Mycol. Prog. 18, 921-931. [21] Bera, M., Khan, M.A., Acharya, K., et al., 2022a. In situ occurrence of Phomites fritel in the phyllosphere of ancient siwalik forests of eastern Himalaya during the mio-pleistocene. In:M. Rai et al. (eds.). Phoma:Diversity, Taxonomy, Bioactivities, and Nanotechnology, https://doi.org/10.1007/978-3-030-81218-8_18 [22] Bera, M., Khan, M.A., Hazra, T., et al., 2022b. A novel fossil-species of Meliolinites Selkirk (fossil Meliolaceae) and its life cycle stages associated with an angiosperm fossil leaf from the Siwalik (Mio-Pliocene) of Bhutan sub-Himalaya. Fungal Biol. 126, 576-586. [23] Bhatia H., Srivastava G., Spicer R.A., et al., 2021. Leaf physiognomy records the Miocene intensification of the south Asia monsoon. Global Planet. Change 196, 103365. [24] Bhatia, H., Srivastava, G., Adhikari, P., et al., 2022. Asian monsoon and vegetation shift:evidence from the Siwalik succession of India. Geol. Mag. 159, 1397-1414. [25] Bhattacharyya, B., 1967. Tertiary plant fossils from cherrapunji and Laitryngew in Khasi and Jainta hills, Assam. Q. J. Geol. Min. Metall. Soc. India 39, 131-134. [26] Biswas, S.K., Ahuja, A.D., Saproo, M.K., et al., 1976. Geology of himalayan foot-hills, Bhutan. In:Cyclostyled Paper Presented at the Himalayan Geology Seminar, New Delhi. [27] Boos, W.R., Kuang, Z., 2010. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature 463, 218-222. [28] Bora, D.S., Shukla, U.K., 2005. Petrofacies implication for the lower Siwalik foreland basin evolution, Kumaun Himalaya, India. Spec. Pub. Palaeontol. Soc. India 2, 163-179. [29] Brooks, T.M., Mittermeier, R.A., da Fonseca, G.A.B., et al., 2006. Global biodiversity conservation priorities. Science 313, 58-61. [30] CEPF., 2005. Ecosystem Profile:Indo-Burman Hotspot, Eastern Himalayan Region. Kathmandu:WWF, US-Asian Programme/CEPF [31] CEPF., 2007. Ecosystem Profile:Indo-Burma Hotspot, Indo-China Region. UK:Critical Ecosystem Partnership Fund, Birdlife International. [32] Chakrabarti, B.K., 2016. Geology of the Himalayan Belt Deformation, Metamorphism, Stratigraphy. Elsevier, pp. 12-46. [33] Chakraborty, T., Taral, S., More, S., et al., 2020. Cenozoic Himalayan foreland basin:an overview and regional perspective of the evolving sedimentary succession. Geodyn. Ind. Plate. pp. 395-437 [34] Champion, H.G. Seth, S.K., 1968. A Revised Survey of the Forest Types in India. Manager of Publication, Delhi. [35] Chatterjee, S., Scotese, C.R., 1999. The breakup of Gondwana and the evolution and biogeography of Indian plate. Proc. Natl. Acad. Sci. India 65A, 397-425. [36] Chirouze, F., Dupont-Nivet, G., Huyghe, P., et al., 2012. Magnetostratigraphy of the Neogene siwalik group in the far eastern Himalaya:Kameng section, Arunachal Pradesh, India. J. Asian Earth Sci. 44, 117-135. [37] Coutand, I., Barrier, L., Govin, G., et al., 2016. Late Miocene-Pleistocene evolution of India-Eurasia convergence partitioning between the Bhutan Himalaya and the Shillong Plateau:new evidences from foreland basin deposits along the Dungsam Chu section, eastern Bhutan. Tectonics 35, 2963-2994. [38] Das P., Khan, M.A., De, B., et al., 2007. Evidence of exoparasitic relationship between Asterina (Asterinaceae) and Chonemorpha (Apocynaceae) from the upper siwalik (Kimin formation) sediments of arunachal sub-Himalaya, India. J. Mycopathol. Res. 45, 225-230. [39] Debnath, A., Taral, S., Mullick S., et al., 2021. The Neogene Siwalik succession of the Arunachal Himalaya:a revised lithostratigraphic classification and its implication for the regional paleogeography. J. Geol. Soc. India 97, 339-350. [40] Ding, L., Spicer, R. A., Yang, J., et al., 2017. Quantifying the rise of the Himalaya orogen and implications for the south Asian monsoon. Geology 45, 215-218. [41] Dwivedi, H.D., Prasad, M., Tripathi, P.P., 2006. Angiospermous fossil leaves from the lower Siwalik sediments of Koilabas area, western Nepal and their significance. J. Appl. Biol. Sci. 32, 135-142. [42] Farnsworth, A., Lunt, D.J., Robinson, S.A., et al., 2019. Past east Asian monsoon evolution controlled by paleogeography, not CO2. Sci. Adv. 5, eaax1697. [43] Ferguson, D.K., 1985. The origin of leaf-assemblages:new light on an old problem. Rev. Palaeobot. Palynol. 46, 117-188. [44] Ferguson, DK., Zetter, R., Paudayal, K.N., 2007. The need for the SEM in palaeopalynology. Comptes Rendus Palevol. 6, 423-430. [45] Fick, S.E., Hijmans, R.J., 2017. WorldClim2:new 1-km spatial resolution climate surfaces for global land surfaces. Int. J. Climatol. 37, 4302-4315. [46] Ganguly, S., Rao, D.P., 1970. Stratigraphy and structure of the tertiary foothills of eastern Himalaya. Darjeeling district. West bengal Quart. J. Geol. Min. Metal. Soc. India 42, 185-195. [47] Grierson, A.J.C., Long, D.G., 1983. Flora of Bhutan. Vol. vol. 1. Royal Botanical Garden, Edinburgh. [48] Guleria, J.S., 1992. Neogene vegetation of peninsular India. Palaeobotanist 40, 285-311. [49] Harris, I., Jones, P.D., Osborn, T.J., et al., 2014. Updated high-resolution grids of monthly climatic observations-the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623-642. [50] Hazra P.K., Verma, D.M., Giri, G.S., 1996. Materials for the Flora of Arunachal Pradesh, vol vol. 1 Bot. Sur. India. Calcutta. [51] Huffaker, C.B., 1942. Vegetational correlations with vapour pressure deficit and relative humidity. Am. Midl. Nat. 28, 486-500. [52] Huggett, R.J., 2004. Fundamentals of Biogeography. Routledge, New York, USA. [53] Johnson, N.M., Stix, J., Tauxe, L., et al., 1985. Paleomagnetic chronology, fluvial processes, and tectonic implications of the Siwalik deposits near Chinji village, Pakistan. J. Geol. 93, 27-40. [54] Joshi, A., Mehrotra, R.C., 2003. A thelypteridaceous fossil fern from the lower Siwalik of the east Kameng district, Arunachal Pradesh, India. J. Geol. Soc. India 61, 483-486. [55] Joshi, A., Mehrotra, R.C., 2007. Mega remains from the Siwalik sediments of west and east Kameng Districts, Arunachal Pradesh. J. Geol. Soc. India 69, 1256-1266. [56] Joshi, A., Tewari, R., Mehrotra, R.C., et al., 2003. Plant remains from the Upper Siwalik sediments of West Kameng District, Arunachal Pradesh, India. Jour. Geol. Soc. India 61, 319-324. [57] Karunakaran, C., Ranga Rao, A., 1976. Status of exploration for the Hydrocarbons in the Himalayan region-contributions to the stratigraphy and structure. In:International Himalayan Geological Seminar India. Section III, O. N. G. C, pp. 1-72. [58] Kaul, R.N., Haridasan, K., 1987. Forest type of Arunachal Pradesh- a preliminary study. J. Econ. Taxon. Bot. 9, 379-389. [59] Khan, M.A., Bera, S., 2007. Dysoxylum miocostulatum sp. nov. -a fossil leaflet of Meliaceae from the lower Siwalik sediments of west Kameng district, Arunachal Pradesh, eastern India. Indian J. Geol. 79, 63-68. [60] Khan, M.A., Bera, S., 2010. Record of fossil fruit wing of Shorea Roxb. From the Neogene of Arunachal Pradesh. Curr. Sci. 98, 1573-1574. [61] Khan, M.A., Bera, S., 2012. Glochidion palaeogamblei sp. nov.-a new fossil leaf of Euphorbiaceae from the Pliocene sediments of Arunachal Pradesh, eastern India and its palaeoclimatic significance. Diversity and conservation of plants and traditional knowledge Bishen Singh Mahendra Pal Singh, Dehradun, pp. 149-154. [62] Khan, M.A., Bera, S., 2014a. On some fabaceous fruits from the siwalik sediments (middle miocene-lower Pleistocene) of eastern Himalaya. J. Geol. Soc. India 83, 165-174. [63] Khan, M.A., Bera, S., 2014b. New lauraceous species from the Siwalik Forest of Arunachal Pradesh, eastern Himalaya, and their palaeoclimatic and palaeogeographic implications. Turk. J. Bot. 38, 453-464. [64] Khan, M. A., Bera, S., 2016. Occurrence of Persea Mill. From the siwalik forest of Darjeeling, eastern Himalaya:paleoclimatic and paleogeographic implications. J. Earth Sci. 27, 882-889. [65] Khan, M. A., Bera, S., 2017. First discovery of fossil winged seeds of Pinus L. (family Pinaceae) from the Indian Cenozoic and its paleobiogeographic significance. J. Earth Sci. 126, 1-11. [66] Khan, M.A., De, B., Bera, S., 2007. A fossil fern-leaflet of family Thelypteridaceae from the Middle Siwalik sediments of West Kameng district, Arunachal Pradesh. J. Bot. Soc. Bengal 61, 65-69. [67] Khan, M.A., De, B., Bera, S., 2008. Fossil leaves resembling modern Terminalia chebula Retzius from the lower Siwalik sediments of Arunachal Pradesh, India. Pleione 2, 38-41. [68] Khan, M.A., De, B., Bera, S., 2009. Leaf-impressions of Calophyllum L. from the middle Siwalik sediments of Arunachal sub-Himalaya, India. Pleione 3, 101-106. [69] Khan, M.A., Ghosh, R., Bera, S., et al., 2011. Floral diversity during plio-pleistocene siwalik sedimentation (Kimin formation) in Arunachal Pradesh, India, and its palaeoclimatic significance. Palaeodivers. Palaeoenvir. 91, 237-255. [70] Khan, M.A., Spicer, R.A., Bera, S., et al., 2014a. Miocene to Pleistocene floras and climate of the eastern himalayan Siwaliks, and new palaeoelevation estimates for the namling-oiyug basin, tibet. Global Planet. Change 113, 1-10. [71] Khan, M.A., Spicer, R.A., Spicer, T. E.V., et al., 2014b. Fossil evidence of insect folivory in the eastern Himalayan Neogene Siwalik forests. Palaeogeogr. Palaeoclimatol. Palaeoecol. 410, 264-277. [72] Khan, M.A., Spicer, T.E.V., Spicer, R.A., et al., 2014c. Occurrence of Gynocardia odorata Robert Brown (Achariaceae, formerly Flacourtiaceae) from the Plio-Pleistocene sediments of Arunachal Pradesh, northeast India and its palaeoclimatic and phytogeographic significance. Rev. Palaeobot. Palynol. 211, 1-9. [73] Khan, M.A., Bera, S., Ghosh, R., et al., 2015a. Leaf cuticular morphology of some angiosperm taxa from the Siwalik sediments (middle Miocene to lower Pleistocene) of Arunachal Pradesh, eastern Himalaya:systematic and palaeoclimatic implications. Rev. Palaeobot. Palynol. 214, 9-26. [74] Khan, M.A., Bera, S., Spicer, R.A., et al., 2015b. Plant-arthropod associations from the Siwalik forests (middle Miocene) of Darjeeling sub-Himalaya, India. Palaeogeogr. Palaeoclimatol. Palaeoecol. 438, 191-202. [75] Khan, M.A., Spicer, R.A., Spicer, T.E.V., et al., 2016. Occurrence of Shorea Roxburgh ex C.F. Gaertner (Dipterocarpaceae) in the Neogene siwalik forests of eastern Himalaya and its biogeography during the cenozic of Southeast Asia. Rev. Palaeobot. Palynol. 233, 236-254. [76] Khan, M.A., Spicer, R.A., Spicer, T. E. V., et al., 2017a. Evidence for diversification of Calophyllum L. (Calophyllaceae) in the Neogene siwalik forests of eastern Himalaya. Plant Syst. Evol. 303, 371-386. [77] Khan, M.A., Spicer, R.A., Spicer, T.E.V., et al., 2017b. First occurrence of Mastixioid (Cornaceae) fossil in India and its biogeographic implication. Rev. Palaeobot. Palynol. 247, 83-96. [78] Khan M.A., Bera, M., Spicer, R.A., et al., 2018a. Evidence of simultaneous occurrence of tylosis formation and fungal interaction in a late Cenozoic angiosperm from the eastern Himalaya. Rev. Palaeobot. Palynol. 259, 171-184. [79] Khan M.A., Bera, M., Bera, S., 2018b. Vizellopsidites siwalika, a new fossil epiphyllous fungus from the Plio-Pleistocene of Arunachal Pradesh, eastern Himalaya. Nova Hedwigia 107, 543-555. [80] Khan, M. A., Bera, M., Spicer, R.A., et al., 2019a. Floral diversity and environment during the middle Siwalik sedimentation (Pliocene) in the Arunachal sub-Himalaya. Paleobiodivers. Paleoenviron. 99, 401-424. [81] Khan, M. A., Bera, M., Spicer, R. A., et al., 2019b. Palaeoclimatic estimates for a latest Miocene-Pliocene flora from the Siwalik group of Bhutan:evidence for the development of the south Asian monsoon in the eastern Himalaya. Palaeogeogr. Palaeoclimatol. Palaeoecol. 514, 326-335. [82] Khan, M.A., Bera, M., Bera, S., 2019c. A new meliolaceos foliicolous fungus from the Plio-Pleistocene of Arunachal Pradesh, eastern Himalaya. Rev. Palaeobot. Palynol. 268, 55-64. [83] Kovach, W.L., Spicer, R.A., 1996. Canonical correspondence analysis of leaf physiognomy:a contribution to the development of a new palaeoclimatological tool. Palaeoclimates 2, 125-138. [84] Lakhanpal, R.N., 1965. Occurrence of Zizyphus in the Siwaliks near Jawalamukhi. Curr. Sci. 34, 666-667. [85] Lakhanpal, R.N., 1967. Fossil Rhamnaceae from the Lower Siwalik beds near Jawalamukhi, Himachal Pradesh. Publication of Centre of Advance Study in Geology, Panjab University, Chandigarh 3, 23-26. [86] Lakhanpal, R.N., 1970. Tertiary floras of India and their bearing on the historical geology of the region. Taxon 19, 675-694. [87] Lakhanpal, R.N., Awasthi, N., 1992. New species of Fissistigma and Terminalia from the siwalik sediments of Balugoloa, Himachal Pradesh. Geophytology 21, 49-52. [88] Mandal, A., Samajpati, N., Bera, S., 2009. In situ occurrence of epiphyllous fungus Phomites Fritel from the lower Siwalik sediments of Darjeeling foothills. J. Bot. Soc. Bengal 63, 37-40. [89] Mandal, A., Samajpati, N., Bera, S., 2011. A new species of Meliolinites (fossil Meliolales) from the Neogene sediments of sub-Himalayan West Bengal, India. Nova Hedwigia 92, 435-440. [90] Medlicott, H.B., 1865. The coal of Assam, results of a brief visit to the coalfields that province in 1865; with geological note on Assam and the hills to the south of it. Mem. Geol. Sur. India 4, 388-442. [91] Mehrotra R.C., Awasthi N., Dutta S.K., 1999. Study of fossil wood from the upper Tertiary sediments (Siwalik) of Arunachal Pradesh, India and its implication in palaeoecological and phytogeographical interpretations. Rev. Palaeobot. Palynol. 107, 223-247. [92] Mehrotra, R.C., Srivastava, G., Srikarni, C., 2018. Lagerstroemia L. wood from the Kimin Formation (upper Siwalik) of Arunachal Pradesh and its climatic and phytogeographic significance. J. Geol. Soc. India 91, 695-699. [93] Mitra, S., Banerjee, M., 2000. On the occurrence of epiphyllous Deuteromycetous fossil fungi Palaeocercospora siwalikensis gen. et. sp. nov. and Palaeocolletotrichum graminioides gen. et. sp. nov. from Neogene sediments of Darjeeling foothills, Eastern Himalaya. J. Mycopathol. Res. 37, 7-11. [94] Mitra, S., Banerjee, M., 2004. Fossil fruit Derrisocarpon miocenicum gen. et. sp. nov. and leaflet Derrisophyllum Siwalicum gen. et. sp. nov. cf. Derris trifoliata Lour. of Fabaceae from Siwalik sediments of Darjeeling foothills, eastern Himalaya, India with remarks on site of origin and distribution of the genus. Phytomorphology 54, 253-263. [95] Mitra S., Bera, S., Banerjee, M., 2002. On a new epiphyllous fungus Palaeoasterina siwalika gen. et. sp. nov. from the Siwalik (middle Miocene) sediments of Darjeeling foothills, India with remarks on environment. Phytomorphology 52, 285-292. [96] Molnar, P., Boos, W.R., Battisti, D.S., 2010. Orographic controls on climate and paleoclimate of Asia:thermal and mechanical roles for the Tibetan Plateau. Annu. Rev. Earth Planet Sci. 38, 77-102. [97] More, S., Rit, R., Khan, M.A., et al., 2018. Record of leaf and pollen cf. Sloanea (Elaeocarpaceae) from the middle siwalik of Darjeeling sub-Himalaya, India and its palaeobiogeographic implications. J. Geol. Soc. India 91, 301-306. [98] Morley, R.J., 2000. Origin and Evolution of Tropical Rain Forests. Chichester, UK, p. 27. [99] Mosbrugger, V., 1999. The nearest living relative method. In fossil plants and spores:Modern techniques (eds TP Jones and NP Rowe). Bath:Geol. Soc. London, pp. 261-265. [100] Mosbrugger, V., Utescher, T., 1997. The coexistence approach-a method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils. Palaeogeogr. Palaeoclimatol. Palaeoecol. 134, 61-86. [101] Mosbrugger, V., Utescher, T., Dilcher, D.L., 2005. Cenozoic continental climatic evolution of Central Europe. Proc. Natl. Acad. Sci. U.S.A. 102, 14964-14969. [102] New, M., Hulme, M., Jones, P., 1999. Representing twentieth-century space-time climate Variability. Part I:development of a 1961-90 mean monthly terrestrial climatology. J. Clim. 12, 829-856. [103] New, M., Lister, D., Hulme, M., et al., 2002. A high-resolution data set of surface climate over global land areas. Clim. Res. 21, 1-15. [104] Parkash, B., Sharma, R.P., Roy, A.K., 1980. The Siwalik group (Molasse) sediments shed by collision of continental plates. Sediment. Geol. 25, 127-159. [105] Pathak, N.R., 1969. Megafossils from the foothills of Darjeeling district, India. J. Bot. Soc. Bengal, Calcutta, pp. 379-386. [106] Pilgrim, G.E., 1910. Preliminary note on a revised classification of the Tertiary freshwater deposits of India. Record Geol. Surv. India, vol XL, Part 3, pp. 185-205. [107] Pilgrim, G.E., 1913. The correlation of the Siwaliks with mammal horizons of Europe. Rec. Geol. Sur. India 43, 264-326. [108] Pradhan, U.C., Lachungpa, S.T., 1990. Sikkim-himalayan Rhododendron. Primulaceae Books, Kalimpong, Darjeeling, p. 130. [109] Prakash, U., Prasad, M., 1984. Wood of Bauhinia from the lower Siwalik beds of Uttar Pradesh, India. Paleobotanist 32, 140-145. [110] Prasad, M., 1990. Fossil flora from the siwalik sediments of Koilabas, Nepal. Geohydrology 19, 79-105. [111] Prasad, M., 1994a. Siwalik (middle-Miocene) leaf impressions from the foot hills of the Himalaya, India. Tert. Res.15, 53-90. [112] Prasad, M., 1994b. Plant megafossils from the Siwalik sediments of Koilabas, central Himalaya, Nepal and their impact on palaeoenvironment. Palaeobotanist 42, 126-156. [113] Prasad, M., 2006. Plant fossils from Siwalik sediments of Himachal Pradesh and their palaeoclimatic significance. Phytomorphology 56, 9-22. [114] Prasad, M., 2008. Angiospermous fossil leaves from the Siwalik foreland and their paleoclimatic implication. Paleobotanist 57, 177-215. [115] Prasad, M., Dwivedi, H.D., 2007. Systematic study of the leaf impressions from the Churia Formation of Koilabas area, Nepal and their significance. Palaeobotanist 56, 39-54. [116] Prasad, M., Tripathi, P.P., 2000. Plant megafossils from the Siwalik sediments of Bhutan and their climatic significance. Biol. Mem. 26, 6-19. [117] Prasad, M., Antal, J.S., Tiwari, V.D., 1997. Investigation on plant fossil from Seria Naka in the Himalayan foot hills of Uttar Pradesh, India. Paleobotanist 46, 13-30. [118] Prasad, M., Antal, J.S., Tripathi, P.P., et al., 1999. Further contribution to the Siwalik flora from the Koilabas area, western Nepal. Palaeobotanist 48, 49-95. [119] Prasad, M., Ghosh, R., Tripathi, P.P., 2004. Floristic and climate during the siwalik (middle Miocene) near Kathgodam in the himalayan foothills of Uttaranchal, India. J. Palaeontol. Soc. India 49, 35-93. [120] Prasad, M., Kannaujia, A.K., Alok, Singh, S.K., 2015. Plant megaflora from the Siwalik (upper Miocene) of Darjeeling district, West Bengal, India and its palaeoclimatic and phytogeographic significance. Palaeobotanist 64, 13-94. [121] Ranga Rao, A., Venkatechala, B.S., Sastri, V.V., 1979. Neogene/quaternary boundary and the siwalik. In:Sastri, V.V.E.A. (Ed.), Field Conference on Neogene-Quaternary Boundary, India. [122] Ranga Rao, A., Agarwal, R.P., Sharma, U.N., et al., 1988. Magnetic polarity stratigraphy and vertebrate palaeontology of the upper Siwalik subgroup of Jammu Hills, India. J. Geol. Soc. India 31, 361-385. [123] Sahni, B., 1964a. Revision of Indian Fossil Plants-Monocotyledons. Monograph 1. Birbal Sahni Institute of Palaeobotany, Lucknow. [124] Sahni, B., 1964b. Revision of Indian Fossil Plants-part III. Monocotyledons. Monograph 1. Birbal Sahni Institute of Palaeobotany, Lucknow. [125] Shashi, Pandey, S.M., Tripathi, P.P., 2006. Fossil leaf impressions from Siwalik sediments of Himalayan foot hills of Uttaranchal, India and their significance. Palaeobotanist 55, 77-87. [126] Shashi, Pandey, S.M., Tripathi, P.P., 2008. Siwalik (middle Miocene) leaf impressions from Tanakpur area, Uttaranchal and their bearing on climate. Geophytology 37, 99-108. [127] Singh, G., 1975. On the discovery of first vertebrate fossil from the Upper Tertiary of Subansiri district, Arunachal Pradesh. Ind. Miner. 29, 65-67. [128] Singh, T., 1983. On the stratigraphic correlation of upper Tertiary of Arunachal Pradesh. Geol. Sur. India Mis. Publ. 43, 82-84. [129] Singh, T., 2007. Geology of Itanagar capital complex, Arunachal Himalaya, with special reference to neotectonics. J. Geol. Soc. India 70, 339-352. [130] Singh, T., Prakash, U., 1980. Leaf-impressions from the siwalik sediments of Arunachal Pradesh. Geohydrology 10, 104-107. [131] Spicer, R. A., 1991. Plant taphonomic processes. In:Allison, P.A., Briggs, D.E.G., Taphonomy:Releasing the Data Locked in the Fossil Record. Plenum Press, New York, pp. 71-113. [132] Spicer, R.A., Herman, A.B., 2010. The Late Cretaceous environment of the Arctic:a quantitative reassessment using plant fossils. Palaeogeogr. Palaeoclimatol. Palaeoecol. 295, 423-442. [133] Spicer, R.A., Wolfe, J.A., 1987. Plant taphonomy of late Holocene deposits in trinity (clair engle) lake, northern California. Paleobiology 13, 227-245. [134] Spicer, R.A., Valdes, P.J., Hughes, A.C., et al., 2019. New insights into the thermal regime and hydrodynamics of the early Late Cretaceous Arctic. Geol. Mag. 157, 1729-1749. [135] Spicer, R.A., Yang, J., Spicer, T.E.V., et al., 2021. Woody dicot leaf traits as a palaeoclimate proxy:100 years of development and application. Palaeogeogr. Palaeoclimatol. Palaeoecol. 562, 110138 [136] Srivastava, R., Mehrotra, R.C., 2009. Plant fossils from Dafla Formation, West Kameng district, Arunachal Pradesh. Palaeobotanist 58, 33-49. [137] Srivastava, G., Gaur, R., Mehrotra, R.C., 2015. Lagerstroemia L. from the middle Miocene Siwalik deposits, northern India:implication for Cenozoic range shifts of the genus and the family Lythraceae. J. Earth Syst. Sci. 124, 227-239. [138] Srivastava, G., Mehrotra, R.C., Sirkarni, C., 2018. Fossil wood flora from the Siwalik group of Arunachal Pradesh, India and its climatic and phytogeographic significance. J. Earth Syst. Sci. 127, 1-22. [139] Srivastava, G., Farnsworth, A., Bhatia, H., et al., 2021. Climate and vegetation change during the upper Siwalik-a study based on the palaeobotanical record of the eastern Himalaya. Paleobiodivers. Paleoenviron. 101, 103-121. [140] Su, T., Liu, Y.S., Jacques, F.M.B., et al., 2013. The intensification of the east Asian winter monsoon contributed to the disappearance of Cedrus (Pinaceae) in southwestern China. Quat. Res. 80, 316-325. [141] Sundriyal, M., 1999. 'Distribution, Propagation and Nutritive Value of Some wild Edible Plants in the Sikkim Himalaya.' PhD Thesis, High Altitude Plant Physiology Research Centre, HNB Garjhwal University, Srinagar (Garhwal) and GB Pant Institute of Himalayan Environment and Development, Sikkim Unit, Sikkim, India [142] Takhtajan, A. 1969 Flowering Plants:Origin and Dispersal. Edinburgh:Oliver & Body. [143] Tang, Q., Zhang, X., Yang, X., et al., 2013. Cold winter extremes in northern continents linked to Arctic Sea ice loss. Environ. Res. Lett. 8, 014036. [144] Tang, H., Eronen, J. T., Kaakinen, A., et al., 2015. Strong winter monsoon wind causes surface cooling over India and China in the Late Miocene. Clim. Past 11. 63-93. [145] Taral, S., Kar, N., Chakrobarty, T., 2017. Wave-generated structures in the Siwalik rocks of Tista valley, eastern Himalaya:implication for regional palaeogeography. Curr. Sci. 113, 887-901. [146] Taral, S., Chakraborty, T., Huyghe, P., et al., 2019. Shallow marine to fluviatransition in the Siwalik succession of the Kameng River section, Arunachal Himalaya and its implication for foreland basin evolution. J. Asian Earth Sci. 184:103980. [147] Teodoridis, V., Kovar-Eder, J., Marek, P., et al., 2011. The integrated plant record vegetation analysis:Internet platform and online application. Acta Musei Natl. Pragae, Ser. B-Hist. Nat. 67, 159-164. [148] ter Braak, C.J.F., 1986. Canonical correspondence analysis:a new eigenvector technique for multivariate direct gradient analysis. Ecology 67, 1167-1179. [149] Thanukos, Anna 2012. "Uniformitarianism:Charles Lyell" University of California Museum of Paleontology. Retrieved 23 July 2012. [150] Tripathi, P.P., Pandey, S.M., Prasad, M., 2002. Angiospermous leaf impressions from Siwalik sediments of Himalayan foot hills near Jarva, U.P. and their bearing on palaeoclimate. Biol. Mem. 28, 79-90. [151] Tripathi, P.P., Pandey, P., Mishra, R.K., 2007. Leaf impressions from the Siwalik beds of south-eastern Bhutan and their climatic significance. Plant Archiv. 7, 169-173. [152] Utescher, T., Bruch, A. A., Erdei, B., et al., 2014. The Coexistence Approach-theoretical background and practical considerations of using plant fossils for climate quantification, Palaeogeogr. Palaeoclimatol. Palaeoecol. 410, 58-73. [153] Valdiya, K.S., 2002. Emergence and evolution of Himalaya:reconstructing history in the light of recent studies. Prog. Phys. Geogr. 26, 360-399. [154] Varma, C.P., 1968. On a collection of leaf-impressions from Hardwar, Uttar Pradesh. J. Palaeontol. Soc. India 5-9, 92-88. [155] Vishnu (nee Mandal) A., Khan, M.A., Bera, M., et al., 2017. Fossil Asterinaceae in the phyllosphere of the eastern himalayan Neogene siwalik forest and their palaeoecological significance. Bot. J. Linn. Soc. 185, 147-167. [156] Vishnu, A., Khan, M.A., Bera, M., et al., 2019. Occurrence of phoma Sacc. In the phyllosphere of Neogene siwalik forest of arunachal sub-Himalaya and its palaeoecological implications. Fungal Biol. 123, 18-28. [157] Wolfe, J.A., 1993. A method of obtaining climatic parameters from leaf assemblages. Geol. Soc. Am. Bull. 2040, 1-73. [158] WWF ICIMOD, 2001. Ecoregion-based Conservation in the Eastern Himalaya:Identifying Important Areas for Biodiversity Conservation. Kathmandu:WWF-Nepal. [159] Yang, J., Spicer, R.A., Spicer, T.E.V., Li C.S., 2011. 'CLAMP online':a new web-based palaeoclimate tool and its application to the terrestrial Paleogene and Neogene of North America. Palaeobiol. Palaeoenvir. 91, 163-183. [160] Yang, J., Spicer, R.A., Spicer, T.E.V., et al., 2015. Leaf form-climate relationships on the global stage:an ensemble of characters. Global Ecol. Biogeogr. 10, 1113-1125. [161] Zachos J.C., Pagani, M., Sloan, L., et al., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686-693. [162] Zachos, J.C., Dickens, G.R., Zeebe, R.E., 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279-283. |
[1] | Sampa Kundu, Taposhi Hazra, Tapan Chakraborty, Subir Bera, Mahasin Ali Khan. Evidence of the oldest extant vascular plant (horsetails) from the Indian Cenozoic[J]. Plant Diversity, 2023, 45(05): 569-589. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||