陈心启, 吉占和, 1998. 中国兰花全书[M]. 北京: 中国林业出版社
许大全, 2013. 光合作用学[M] . 北京: 科学出版社
Adibah MSR, Ainuddin AN, 2011. Epiphytic plants responses to light and water Stress[J]. Asian Journal of Plant Sciences, 10: 97—107
Asada K, 1999. The waterwater cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 50: 601—639
Barth C, Krause GH, Winter K, 2001. Responses of photosystem I compared with photosystem II to highlight stress in tropical shade and sun leaves[J]. Plant Cell and Environment, 24: 163—176
Benzing DH, 1990. Vascular Epiphytes[M]. Cambridge: Cambridge University Press
Casano LM, Gomez LD, Lascano HR et al., 1997. Inactivation and degradation of CuZnSOD by active oxygen species in wheat chloroplasts exposed to photo oxidative stress[J]. Plant and Cell Physiology, 38: 433—440
Genty B, Briantais JM, Baker NR, 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochimica et Biophysica Acta, 990: 87—92
Golding AJ, Johnson GN, 2003. Downregulation of linear and activation of cyclic electron transport during drought[J]. Planta, 218: 107—114
Gullo MAL, Raimondo F, Crisafulli A et al., 2010. Leaf hydraulic architecture and water relations of three ferns from contrasting light habitats[J]. Functional Plant Biology, 37: 566—574
Hendrickson L, Furbank RT, Chow WS, 2004. A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence[J]. Photosynthesis Research, 82: 73—81
Huang W, Zhang SB, Cao KF, 2010a. The different effects of chilling stress under moderate illumination on photosystem II compared with photosystem I and subsequent recovery in tropical tree species[J]. Photosynthesis Research, 103: 175—182
Huang W, Zhang SB, Cao KF, 2010b. Stimulation of cyclic electron flow during recovery after chillinginduced photoinhibition of PSII[J]. Plant and Cell Physiology, 51: 1922—1928
Huang W, Fu PL, Jiang YJ et al., 2013. Differences in the responses of photosystem I and photosystem II of three tree species Cleistanthus sumatranus, Celtis philippensis and Pistacia weinmannifolia exposed to a prolonged drought in a tropical limestone forest[J]. Tree Physiology, 33: 211—220
Hwang HJ, Kim JH, Eu YJ et al., 2004. Photoinhibition of photosystem I is accelerated by dimethyldithiocarbamate, an inhibitor of superoxide dismutase, during lightchilling of spinach leaves[J]. Journal of Photochemistry and Photobiology B: Biology, 73: 79—85
Kramer DM, Johnson G, Kiirats O et al., 2004. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes[J]. Photosynthesis Research, 79: 209—218
Liu ZJ (刘仲健), Chen LJ (陈利君), Liu KW (刘可为) et al., 2009. Climate warming brings about extinction tendency in wild population of Cymbidium sinense[J]. Acta Ecologica Sinica (生态学报), 29: 3443—3455
Maxwell K, Johnson GN, 2000. Chlorophyll fluorescence-a practical guide[J]. Journal of Experimental Botany, 51: 659—668
Maxwell C, Griffiths H, Young AJ, 1994. Photosynthetic acclimation to light regime and water stress by the C3CAM epiphyte Guzmania monostachia: gas exchange characteristics, photochemical efficiency and the xanthophyll cycle[J]. Functional Ecology, 8: 746—754
Miyake C, Horiguchi S, Makino A et al., 2005. Effects of light intensity on cyclic electron flow around PSI and its relationship to nonphotochemical quenching of chlorophyll fluorescence in tobacco leaves[J]. Plant and Cell Physiology, 46: 1819—1830
Munekage Y, Hojo M, Meurer J et al., 2002. PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis[J]. Cell, 110: 361—371
Munekage Y, Hashimoto M, Miyake C et al., 2004. Cyclic electron flow around photosystem I is essential for photosynthesis[J]. Nature, 429: 579—582
Murata N, Takahashi S, Nishiyama Y et al., 2007. Photoinhibition of photosystem II under environmental stress[J]. Biochimica et Biophysica Acta, 1767: 414—421
Nishiyama Y, Allakhverdiev SI, Murata N, 2011. Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II[J]. Physiologia Plantarum, 142: 35—46
Nishiyama Y, Allakhverdiev SI, Yamamoto H et al., 2004. Singlet oxygen inhibits the repair of photosystem II by suppressing the translation elongation of the D1 protein in Synechocystis sp. PCC 6803[J]. Biochemistry, 43: 11321—11330
Nishiyama Y, Yamamoto H, Allakhverdiev SI et al., 2001. Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery[J]. European Molecular Biology Organization Journal, 20: 5587—5594
Niyogi KK, Bjorkman O, Grossman AR, 1997.Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching[J]. The Plant Cell, 9: 1369—1380
Niyogi KK, Grossman AR, Bjorkman O, 1998. Arabidopsis mutants define a central role for the xanthophyll cycle in regulation of photosynthetic energy conversion[J]. The Plant Cell, 10: 1121—1134
Peng L, Shikanai T, 2011. Supercomplex formation with photosystem I is required for the stabilization of the chloroplast NADH dehydrogenaselike complex in Arabidopsis[J]. Plant Physiology, 155: 1629—1639
Shikanai T, 2007. Cyclic electron transport around photosystem I: genetic approaches[J]. Annual Review of Plant Biology, 58: 199—217
Silvera K, Santiago LS, Cushman JC et al., 2009. Crassulacean acid metabolism and epiphytism linked to adaptive radiations in the Orchidaceae[J]. Plant Physiology, 149: 1838—1847
Sonoike K, 2006. Photoinhibition and protection of photosystem I[A]. // Golbeck JH ed., Photosystem I: the LightDriven Plastocyanin: Ferredoxin Oxidoreductase, Series Advances in Photosynthesis and Respiration[M]. Dordrecht: Springer, 657—668
Sonoike K, Kamo M, Hihara Y et al., 1997. The mechanism of the degradation of psaB gene product, one of the photosynthetic reaction center subunits of photosystem I, upon photoinhibition[J]. Photosynthesis Research, 53: 55—63
Suorsa M, Jrvia S, Griecoa M et al., 2012. PROTON GRADIENT REGULATION5 is essential for proper acclimation of Arabidopsis photosystem I to naturally and artificially fluctuating light conditions[J]. The Plant Cell, 24: 2934—2948
Stancato GC, Mazzafera P, Buckeridge MS, 2002. Effects of light stress on the growth of the epiphytic orchid Cattleya forbesii Lindl. X Laelia tenebrosa Rolfe[J]. Revista Brasileira de Botanica, 25: 229—235
Takahashi S, Milward SE, Fan DY et al., 2009. How does cyclic electron flow alleviate photoinhibition in Arabidopsis?[J]. Plant Physiology, 149: 1560—1567
Tyystjrvi E, Aro EM, 1996. The rate constant of photoinhibition, measured in lincomycintreated leaves, is directly proportional to light intensity[J]. Proceedings of the National Academy of Sciences of the United States of America, 93: 2213—2218
Wang JH, Li SC, Sun M et al., 2013. Differences in the stimulation of cyclic electron flow in two tropical ferns under water stress are related to leaf anatomy[J]. Physiologia Plantarum, 147: 283—295
Yamori W, Evans JR, von Caemmerer S, 2010. Effects of growth and measurement light intensities on temperature dependence of CO2 assimilation rate in tobacco leaves[J]. Plant, Cell and Environment, 33: 332—343
Zhang JL, Meng LZ, Cao KF, 2009. Sustained diurnal photosynthetic depression in uppermostcanopy leaves of four dipterocarp species in the rainy and dry seasons: does photorespiration play a role in photoprotection? [J]. Tree Physiology, 29: 217—228 |