Aguirre-Gutiérrez, J., van Treuren, R., Hoekstra, R., van Hintum, T.J.L., Vaclavik, T., 2017. Crop wild relatives range shifts and conservation in Europe under climate change. Divers. Distrib. 23 (7), 739e750. https://doi.org/10.1111/ddi.12573. Bai, Y., Wei, X., Li, X., 2018. Distributional dynamics of a vulnerable species in response to past and future climate change:a window for conservation prospects. PeerJ 6, e4287. https://doi.org/10.7717/peerj.4287. Baker, B.B., Moseley, R.K., 2007. Advancing treeline and retreating glaciers:Implications for conservation in Yunnan, P.R. China. Arctic Antarct. Alpine Res. 39 (2), 200e209 https://doi.org/10.1657/1523-0430(2007)39[200:ATARGI]2.0.CO;2. Berry, P.M., Dawson, T.P., Harrison, P.A., Pearson, R., Butt, N., 2003. The sensitivity and vulnerability of terrestrial habitats and species in Britain and Ireland to climate change. J. Nat. Conserv. 11 (1), 15e23. https://doi.org/10.1078/1617-1381-00030. Chen, I.C., Hill, J.K., Ohlemuller, R., Roy, D.B., Thomas, C.D., 2011. Rapid range shifts of species associated with high levels of climate warming. Science 333 (6045), 1024e1026. https://doi.org/10.1126/science.1206432. Deb, J.C., Phinn, S., Butt, N., McAlpine, C.A., 2017. The impact of climate change on the distribution of two threatened Dipterocarp trees. Ecol. Evol. 7 (7), 2238e2248. https://doi.org/10.1002/ece3.2846. Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E., Yates, C.J., 2011. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17 (1), 43e57. https://doi.org/10.1111/j.1472-4642.2010.00725.x. Elsen, P.R., Tingley, M.W., 2015. Global mountain topography and the fate of montane species under climate change. Nat. Clim. Change 5 (8), 772e776.https://doi.org/10.1038/nclimate2656. Engler, R., Randin, C.F., Thuiller, W., Dullinger, S., Zimmermann, N.E., AraÚJo, M.B., et al., 2011. 21st century climate change threatens mountain flora unequally across Europe. Glob. Chang. Biol. 17 (7), 2330e2341. https://doi.org/10.1111/j.1365-2486.2010.02393.x. Environmental Systems Resource Institute (ESRI), 2014. ArcMap 10.2. ESRI, Redlands, California. Escalante, T., Rodríguez-Tapia, G., Linaje, M., Illoldi-Rangel, P., González-López, R., 2013. Identification of areas of endemism from species distribution models:threshold selection and Nearctic mammals. Tip 16 (1), 5e17. https://doi.org/10.1016/s1405-888x(13)72073-4. Fois, M., Bacchetta, G., Cogoni, D., Fenu, G., 2017. Current and future effectiveness of the Natura 2000 network for protecting plant species in Sardinia:a nice and complex strategy in its raw state? J. Environ. Plann. Manag. 61 (2), 332e347.https://doi.org/10.1080/09640568.2017.1306496. Fois, M., Cuena-Lombraña, A., Fenu, G., Cogoni, D., Bacchetta, G., 2016. The reliability~of conservation status assessments at regional level:Past, present and future perspectives on Gentiana lutea L. ssp. lutea in Sardinia. J. Nat. Conserv. 33, 1e9.https://doi.org/10.1016/j.jnc.2016.06.001. Grossenbacher, D., Briscoe Runquist, R., Goldberg, E.E., Brandvain, Y., 2015.Geographic range size is predicted by plant mating system. Ecol. Lett. 18 (7), 706e713. https://doi.org/10.1111/ele.12449. Hamann, A., Wang, T., 2006. Potential effects of climate change on ecosystem and tree species distribution in British Columbia. Ecology 87 (11), 2773e2786 https://doi.org/10.1890/0012-9658(2006)87[2773:peocco]2.0.co;2. He, S.L., Wang, Y.S., Li, D.Z., Yi, T.S., 2016. Environmental and historical determinants of patterns of genetic differentiation in wild soybean (Glycine soja Sieb. et Zucc).Sci. Rep. 6, 22795. https://doi.org/10.1038/srep22795. Heywood, V.H., 2018. Conserving plants within and beyond protected areas e still problematic and future uncertain. Plant. Divers. https://doi.org/10.1016/j.pld. 2018.10.001. Hickling, R., Roy, D.B., Hill, J.K., Fox, R., Thomas, C.D., 2006. The distributions of a wide range of taxonomic groups are expanding polewards. Glob. Chang. Biol. 12(3), 450e455. https://doi.org/10.1111/j.1365-2486.2006.01116.x. Hughes, A.C., 2017. Mapping priorities for conservation in Southeast Asia. Biol.Conserv. 209, 395e405. https://doi.org/10.1016/j.biocon.2017.03.007. Kramer-Schadt, S., Niedballa, J., Pilgrim, J.D., Schröder, B., Lindenborn, J., Reinfelder, V., et al., 2013. The importance of correcting for sampling bias in MaxEnt species distribution models. Divers. Distrib. 19 (11), 1366e1379. https://doi.org/10.1111/ddi.12096. Lenoir, J., Gegout, J.C., Marquet, P.A., de Ruffray, P., Brisse, H., 2008. A significant upward shift in plant species optimum elevation during the 20th century.Science 320 (5884), 1768e1771. https://doi.org/10.1126/science.1156831. Liang, Q., Xu, X., Mao, K., Wang, M., Wang, K., Xi, Z., et al., 2018. Shifts in plant distributions in response to climate warming in a biodiversity hotspot, the Hengduan Mountains. J. Biogeogr. 45 (6), 1334e1344. https://doi.org/10.1111/jbi.13229. Mittermeier, R.A., 2004. Hotspots revisited. Cemex. Nogués-Bravo, D., Araújo, M.B., Errea, M.P., Martínez-Rica, J.P., 2007. Exposure of global mountain systems to climate warming during the 21st century. Glob. Environ.Change 17 (3e4), 420e428. https://doi.org/10.1016/j.gloenvcha.2006.11.007. Pacifici, M., Foden, W.B., Visconti, P., Watson, J.E.M., Butchart, S.H.M., Kovacs, K.M., et al., 2015. Assessing species vulnerability to climate change. Nat. Clim. Change 5 (3), 215e224. https://doi.org/10.1038/nclimate2448. Parmesan, C., 2006. Ecological and evolutionary responses to recent climate change.Annu. Rev. Ecol. Evol. Syst. 37 (1), 637e669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100. Pauli, H., Gottfried, M., Reiter, K., Klettner, C., Grabherr, G., 2007. Signals of range expansions and contractions of vascular plants in the high Alps:observations(1994e2004) at the GLORIA master site Schrankogel, Tyrol, Austria. Glob.Chang. Biol. 13 (1), 147e156. https://doi.org/10.1111/j.1365-2486.2006.01282.x. Pearson, R.G., Dawson, T.P., 2003. Predicting the impacts of climate change on the distribution of species:are bioclimate envelope models useful? Glob. Ecol.Biogeogr. 12 (5), 361e371. https://doi.org/10.1046/j.1466-822X.2003.00042.x. Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190 (3e4), 231e259. https://doi.org/10.1016/j.ecolmodel.2005.03.026. Poudel, R.C., Möller, M., Liu, J., Gao, L.-M., Baral, S.R., Li, D.-Z., et al., 2014. Low genetic diversity and high inbreeding of the endangered yews in Central Himalaya:implications for conservation of their highly fragmented populations.Divers. Distrib. 20 (11), 1270e1284. https://doi.org/10.1111/ddi.12237. Quintero, I., Wiens, J.J., 2013. Rates of projected climate change dramatically exceed past rates of climatic niche evolution among vertebrate species. Ecol. Lett. 16(8), 1095e1103. https://doi.org/10.1111/ele.12144. R Core Team, 2016. R:A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Radosavljevic, A., Anderson, R.P., Araújo, M., 2014. Making better Maxent models of species distributions:complexity, overfitting and evaluation. J. Biogeogr. 41 (4), 629e643. https://doi.org/10.1111/jbi.12227. Saltre, F., Duputie, A., Gaucherel, C., Chuine, I., 2015. How climate, migration ability and habitat fragmentation affect the projected future distribution of European beech. Glob. Chang. Biol. 21 (2), 897e910. https://doi.org/10.1111/gcb.12771. Stanton, J.C., Pearson, R.G., Horning, N., Ersts, P., Reşit Akçakaya, H., 2012. Combining static and dynamic variables in species distribution models under climate change. Methods Ecol. Evol. 3 (2), 349e357. https://doi.org/10.1111/j.2041-210X. 2011.00157.x. Tang, C.Q., Dong, Y.F., Herrando-Moraira, S., Matsui, T., Ohashi, H., He, L.Y., et al., 2017. Potential effects of climate change on geographic distribution of the Tertiary relict tree species Davidia involucrata in China. Sci. Rep. 7, 43822.https://doi.org/10.1038/srep43822. Veloz, S.D., 2009. Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. J. Biogeogr. 36 (12), 2290e2299.https://doi.org/10.1111/j.1365-2699.2009.02174.x. Wehn, S., Johansen, L., 2015. The distribution of the endemic plant Primula scandinavica, at local and national scales, in changing mountainous environments.Biodiversity 16 (4), 278e288. https://doi.org/10.1080/14888386.2015.1116408. Wiens, J.J., 2016. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14 (12), e2001104. Wu, Q., Jiang, X.W., Xie, J., 2017. Evaluation of surface air temperature in Southwestern China simulated by the CMIP5 models. Plateau Meteorol. 36 (2), 358e370 (In Chinese). https://doi.org/10.7522/j.issn.1000-0534.2016.00046. Xu, B., Li, Z.M., Sun, H., 2014. Plant diversity and floristic characters of the alpine subnival belt flora in the Hengduan Mountains, SW China. J. Systemat. Evol. 52(3), 271e279. https://doi.org/10.1111/jse.12037. Yan, H.F., Liu, Y.J., Xie, X.F., Zhang, C.Y., Hu, C.M., Hao, G., et al., 2015. DNA barcoding evaluation and its taxonomic implications in the species-rich genus Primula L.in China. PLoS One 10 (4), e0122903. https://doi.org/10.1371/journal.pone.0122903. You, J., Qin, X., Ranjitkar, S., Lougheed, S.C., Wang, M., Zhou, W., et al., 2018.Response to climate change of montane herbaceous plants in the genus Rhodiola predicted by ecological niche modelling. Sci. Rep. 8 (1), 5879. https://doi.org/10.1038/s41598-018-24360-9. Zhang, W.L., Zhang, J.Y., Fan, G.Z., 2015. Evaluation and projection of dry- and wetseason precipitation in southwestern China using CMIP5 models. Chin. J. Atmos.Sci. 39 (3), 559e570 (In Chinese). Zhou, Z., Hong, D., Niu, Y., Li, G., Nie, Z., Wen, J., et al., 2013. Phylogenetic and biogeographic analyses of the Sino-Himalayan endemic genus Cyananthus(Campanulaceae) and implications for the evolution of its sexual system. Mol.Phylogenet. Evol. 68 (3), 482e497. https://doi.org/10.1016/j.ympev.2013.04.027. |