Plant Diversity ›› 2019, Vol. 41 ›› Issue (05): 347-351.DOI: 10.1016/j.pld.2019.09.003
• Articles • 上一篇
Ai-Rong Lia,b, Ping Maoc, Yun-Ju Lid
收稿日期:
2019-05-13
修回日期:
2019-08-28
出版日期:
2019-10-25
发布日期:
2019-11-21
通讯作者:
Ai-Rong Li,E-mail addresses:airongli@mail.kib.ac.cn;Yun-Ju Li,E-mail addresses:liyj1978@163.com.
基金资助:
Ai-Rong Lia,b, Ping Maoc, Yun-Ju Lid
Received:
2019-05-13
Revised:
2019-08-28
Online:
2019-10-25
Published:
2019-11-21
Contact:
Ai-Rong Li,E-mail addresses:airongli@mail.kib.ac.cn;Yun-Ju Li,E-mail addresses:liyj1978@163.com.
Supported by:
摘要: Malania oleifera (Olacaceae) is a valued tree species, mostly because its seeds have high precious fatty acid content (particularly nervonic acid). However, seedling mortality rates are often high and regeneration of this tree has been problematic, which greatly hinders its utilization at a large scale. Cultivation difficulties of some tree species in the family Olacaceae have been attributed to their root hemiparasitic habit. Prompted by field observations and the taxonomic proximity of M. oleifera to root hemiparasites in Olacaceae, we hypothesized that tuberous structures observed on the roots of M. oleifera are parasitic organs known as haustoria. To test this hypothesis, we collected root samples from M. oleifera plants of various ages and growth conditions, investigated the morphological and anatomical features of tuberous structures and their connections to neighboring roots. Our analyses confirmed that M. oleifera are root hemiparasites. To the best of our knowledge, this is the first empirical report on root hemiparasitism in M. oleifera. Because life strategies of root hemiparasitic plants differ greatly from autotrophic plants, the root hemiparasitic habit needs to be taken into account for successful seedling regeneration of M. oleifera. This study establishes the foundation for investigations into a long-neglected but essential aspect in research of these highly valued tree species.
Ai-Rong Li, Ping Mao, Yun-Ju Li. Root hemiparasitism in Malania oleifera (Olacaceae), a neglected aspect in research of the highly valued tree species[J]. Plant Diversity, 2019, 41(05): 347-351.
Ai-Rong Li, Ping Mao, Yun-Ju Li. Root hemiparasitism in Malania oleifera (Olacaceae), a neglected aspect in research of the highly valued tree species[J]. Plant Diversity, 2019, 41(05): 347-351.
年份 Year | 物种 Species | 样本类型 Sample type | 主要结果 Main result | 参考文献 Reference |
---|---|---|---|---|
1987 | 垂序商陆 Phytolacca americana 苘麻 Abutilon theophrasti Solanum mauritanianum Lycopersicon lycopersicum | 亲本 Parent | 近亲缘个体共存, 具有更大的株高和种子数, 种子萌发率更高 Taller, more seeds and seed germination rate with kin plants | Willison et al., 1987 |
1989 | 长叶车前 Plantago lanceolata | 基因型 Genotype | 近亲缘个体共存, 形成较多花序与果实座 More flowers and infructescences with kin plants | Tonsor, 1989 |
1992 | Impatiens capensis | 亲本 Parent | 近亲缘个体共存, 目标植物生物量更大 Larger biomass with kin plants | Argyres & Schmitt, 1992 |
2003 | Cakile edentula | 亲本 Parent | 近亲缘个体共存, 目标植物具有更高的株高及生物量 Taller and larger biomass with kin plants | Donohue, 2003 |
2003 | 大麦 Hordeum vulgare | 基因型 Genotype | 近亲缘个体共存, 形成较少根系、更大的叶面积 Less roots and larger leaf area with kin plants | Ninkovic, 2003 |
2008 | Cakile edentula | 亲本 Parent | 近亲缘个体共存, 目标植物形成较少侧根 Less later roots with kin plants | Dudley & File, 2007 |
2010 | 拟南芥 Arabidopsis thaliana | 基因型 Genotype | 浸泡在近亲缘个体根系分泌物中, 形成较少侧根 Less later roots when exposed in the root exudates of kin plants | Biedrzycki et al., 2010 |
2011 | Cakile edentula | 亲本 Parent | 近亲缘个体共存, 目标植物根冠比更小 Smaller root/shoot ratio with kin plants | Bhatt et al., 2011 |
2011 | Ipomoea hederacea | 基因型 Genotype | 近亲缘个体共存, 形成较小根系和更多种子 Less roots and more seed with kin plants | Biernaskie, 2011 |
2013 | 玉米 Zea may | 基因型 Genotype | 根叶比随着亲缘关系的渐远而变小 With the increase of genetic distance, root length/leaf area ratio were decreased | Lin, 2013 |
2014 | 发草 Deschampsia caespitosa | 亲本 Parent | 不同亲缘组改变了根系的构型 Root architecture was changed with different kin plants | Semchenko et al., 2014 |
2014 | Distichlis spicata | 克隆体 Clone | 亲缘组具有更大生物量和较小根冠比 Larger biomass and smaller R/S ratio with kin plants | Mercer & Eppley, 2014 |
2015 | 大豆 Glycine max | 基因型 Genotype | 远亲缘个体共存, 目标植物氮素利用能力显著增强 Higher nitrogen utilization efficiency in target plant with non-kin plants | Xiao et al., 2015 |
2015 | 拟南芥 Arabidopsis thaliana | 基因型 Genotype | 近亲缘个体间叶片重叠度小 Less leaf overlap with kin plants | Crepy & Casal, 2015 |
2011 | 拟南芥 Arabidopsis thaliana | 基因型 Genotype | 远亲缘个体共存, 目标植物根系病害相关基因表达上调 Up regulation of pathogen-related genes expression in root with non-kin plants | Biedrzycki et al., 2011 |
2012 | 豚草 Ambrosia artemisiifolia | 亲本 Parent | 近亲缘个体共存, 形成更大菌根网络 Larger mycorrhiza network with near kin plants | File et al., 2012 |
2012 | 拟南芥 Arabidopsis thaliana | 基因型 Genotype | 远亲缘个体共存, 目标植物根系防御类蛋白增加 Accumulated defense-related proteins in root with far kin plants | Badri et al., 2012 |
2013 | 豌豆 Pisum sativum | 克隆体 Clone | 远亲缘个体共存, 根系呼吸效率提高 Higher respiratory rate in root with non-self | Meier et al., 2013 |
2009 | Artemisia tridentate | 克隆体 Clone | 近亲缘个体共存, 目标植物虫害程度较小 Less insect attack with near kin plants | Karban & Shiojiri, 2009 |
2013 | Artemisia tridentate | 克隆体 Clone | 接受近亲缘个体挥发物, 目标植物后续虫害程度较轻 Less insect attack when exposed in volatile of near kin plants | Karban et al., 2013 |
表1 支持植物亲缘识别的部分重要文献列表
Table 1 Important references of supporting kin recognition in plants
年份 Year | 物种 Species | 样本类型 Sample type | 主要结果 Main result | 参考文献 Reference |
---|---|---|---|---|
1987 | 垂序商陆 Phytolacca americana 苘麻 Abutilon theophrasti Solanum mauritanianum Lycopersicon lycopersicum | 亲本 Parent | 近亲缘个体共存, 具有更大的株高和种子数, 种子萌发率更高 Taller, more seeds and seed germination rate with kin plants | Willison et al., 1987 |
1989 | 长叶车前 Plantago lanceolata | 基因型 Genotype | 近亲缘个体共存, 形成较多花序与果实座 More flowers and infructescences with kin plants | Tonsor, 1989 |
1992 | Impatiens capensis | 亲本 Parent | 近亲缘个体共存, 目标植物生物量更大 Larger biomass with kin plants | Argyres & Schmitt, 1992 |
2003 | Cakile edentula | 亲本 Parent | 近亲缘个体共存, 目标植物具有更高的株高及生物量 Taller and larger biomass with kin plants | Donohue, 2003 |
2003 | 大麦 Hordeum vulgare | 基因型 Genotype | 近亲缘个体共存, 形成较少根系、更大的叶面积 Less roots and larger leaf area with kin plants | Ninkovic, 2003 |
2008 | Cakile edentula | 亲本 Parent | 近亲缘个体共存, 目标植物形成较少侧根 Less later roots with kin plants | Dudley & File, 2007 |
2010 | 拟南芥 Arabidopsis thaliana | 基因型 Genotype | 浸泡在近亲缘个体根系分泌物中, 形成较少侧根 Less later roots when exposed in the root exudates of kin plants | Biedrzycki et al., 2010 |
2011 | Cakile edentula | 亲本 Parent | 近亲缘个体共存, 目标植物根冠比更小 Smaller root/shoot ratio with kin plants | Bhatt et al., 2011 |
2011 | Ipomoea hederacea | 基因型 Genotype | 近亲缘个体共存, 形成较小根系和更多种子 Less roots and more seed with kin plants | Biernaskie, 2011 |
2013 | 玉米 Zea may | 基因型 Genotype | 根叶比随着亲缘关系的渐远而变小 With the increase of genetic distance, root length/leaf area ratio were decreased | Lin, 2013 |
2014 | 发草 Deschampsia caespitosa | 亲本 Parent | 不同亲缘组改变了根系的构型 Root architecture was changed with different kin plants | Semchenko et al., 2014 |
2014 | Distichlis spicata | 克隆体 Clone | 亲缘组具有更大生物量和较小根冠比 Larger biomass and smaller R/S ratio with kin plants | Mercer & Eppley, 2014 |
2015 | 大豆 Glycine max | 基因型 Genotype | 远亲缘个体共存, 目标植物氮素利用能力显著增强 Higher nitrogen utilization efficiency in target plant with non-kin plants | Xiao et al., 2015 |
2015 | 拟南芥 Arabidopsis thaliana | 基因型 Genotype | 近亲缘个体间叶片重叠度小 Less leaf overlap with kin plants | Crepy & Casal, 2015 |
2011 | 拟南芥 Arabidopsis thaliana | 基因型 Genotype | 远亲缘个体共存, 目标植物根系病害相关基因表达上调 Up regulation of pathogen-related genes expression in root with non-kin plants | Biedrzycki et al., 2011 |
2012 | 豚草 Ambrosia artemisiifolia | 亲本 Parent | 近亲缘个体共存, 形成更大菌根网络 Larger mycorrhiza network with near kin plants | File et al., 2012 |
2012 | 拟南芥 Arabidopsis thaliana | 基因型 Genotype | 远亲缘个体共存, 目标植物根系防御类蛋白增加 Accumulated defense-related proteins in root with far kin plants | Badri et al., 2012 |
2013 | 豌豆 Pisum sativum | 克隆体 Clone | 远亲缘个体共存, 根系呼吸效率提高 Higher respiratory rate in root with non-self | Meier et al., 2013 |
2009 | Artemisia tridentate | 克隆体 Clone | 近亲缘个体共存, 目标植物虫害程度较小 Less insect attack with near kin plants | Karban & Shiojiri, 2009 |
2013 | Artemisia tridentate | 克隆体 Clone | 接受近亲缘个体挥发物, 目标植物后续虫害程度较轻 Less insect attack when exposed in volatile of near kin plants | Karban et al., 2013 |
年份 Year | 品种 Species | 样本类型 Sample type | 主要结果 Main result | 参考文献 Reference |
---|---|---|---|---|
1985 | 拟南芥 Arabidopsis thalian | 基因型 Genotype | 叶面积无显著差异 No significant difference in leaf area | Goodnight, 1985 |
2004 | Triplasis purpurea | 亲本 Parent | 近亲缘个体共存, 地上部生物量较小 Lower aboveground biomass with kin plants | Cheplick & Kane, 2004 |
2009 | 狭叶羽扇豆 Lupinus angustifolius | 亲本 Parent | 近亲缘个体共存, 开花数, 结果数较少 Less flowers and pods with kin plants | Milla et al., 2009 |
2009 | Impatiens pallida | 亲本 Parent | 近亲缘个体共存, 形成更多根系, 且叶面积更小, 亲缘共处具有更高根冠比 Higher root biomass, root/shoot ratio and less leaf area with kin plants | Murphy & Dudley, 2009 |
2010 | 拟南芥 Arabidopsis thaliana | 基因型 Genotype | 不同亲缘组合, 生物量、荚果数和基因表达没有显著差异 No significant difference in biomass, siliques and gene expression with kin plants | Masclaux et al., 2010 |
2012 | 白车轴草 Trifolium repens | 亲本 Parent | 不同亲缘组合, 叶面积和荚果数均无显著差异 No significant difference in leaf area and pods with kin plants | Lepik et al., 2012 |
2012 | 狭叶羽扇豆 Lupinus angustifolius | 亲本 Parent | 株高、叶面积、生物量、根长各指标均无差异 No significant difference in plant height, leaf area, biomass and root length | Milla et al., 2012 |
2013 | 拟南芥 Arabidopsis thalian | 基因型 Genotype | 目标个体根系向近亲缘个体生长 Root tend to grow near kin plants | Caffaro et al., 2013 |
2013 | 水稻 Oryza sativa | 基因型 Genotype | 目标个体根系向近亲缘个体生长 Root tend to grow near kin plants | Fang et al., 2013 |
表2 反对植物亲缘识别的部分重要文献列表
Table 2 Important references list of opposing kin recognition in plant
年份 Year | 品种 Species | 样本类型 Sample type | 主要结果 Main result | 参考文献 Reference |
---|---|---|---|---|
1985 | 拟南芥 Arabidopsis thalian | 基因型 Genotype | 叶面积无显著差异 No significant difference in leaf area | Goodnight, 1985 |
2004 | Triplasis purpurea | 亲本 Parent | 近亲缘个体共存, 地上部生物量较小 Lower aboveground biomass with kin plants | Cheplick & Kane, 2004 |
2009 | 狭叶羽扇豆 Lupinus angustifolius | 亲本 Parent | 近亲缘个体共存, 开花数, 结果数较少 Less flowers and pods with kin plants | Milla et al., 2009 |
2009 | Impatiens pallida | 亲本 Parent | 近亲缘个体共存, 形成更多根系, 且叶面积更小, 亲缘共处具有更高根冠比 Higher root biomass, root/shoot ratio and less leaf area with kin plants | Murphy & Dudley, 2009 |
2010 | 拟南芥 Arabidopsis thaliana | 基因型 Genotype | 不同亲缘组合, 生物量、荚果数和基因表达没有显著差异 No significant difference in biomass, siliques and gene expression with kin plants | Masclaux et al., 2010 |
2012 | 白车轴草 Trifolium repens | 亲本 Parent | 不同亲缘组合, 叶面积和荚果数均无显著差异 No significant difference in leaf area and pods with kin plants | Lepik et al., 2012 |
2012 | 狭叶羽扇豆 Lupinus angustifolius | 亲本 Parent | 株高、叶面积、生物量、根长各指标均无差异 No significant difference in plant height, leaf area, biomass and root length | Milla et al., 2012 |
2013 | 拟南芥 Arabidopsis thalian | 基因型 Genotype | 目标个体根系向近亲缘个体生长 Root tend to grow near kin plants | Caffaro et al., 2013 |
2013 | 水稻 Oryza sativa | 基因型 Genotype | 目标个体根系向近亲缘个体生长 Root tend to grow near kin plants | Fang et al., 2013 |
纲 Class | 生长周期 Growth cycle | 种 Species | 目 Order | 科 Family | 属 Genus |
---|---|---|---|---|---|
双子叶纲 Dicotyledones | 一年生 Therophyte | 大豆 Glycine max | 蔷薇目 Rosales | 豆科 Leguminosae | 大豆属 Glycine |
狭叶羽扇豆 Lupinus angustifolius | 蔷薇目 Rosales | 豆科 Leguminosae | 羽扇豆属 Lupinus | ||
豌豆 Pisum sativum | 蔷薇目 Rosales | 豆科 Leguminosae | 豌豆属 Pisum | ||
Lycopersicon lycopersicum | 管状花目 Tubiflorae | 茄科 Solanaceae | 番茄属 Lycopersicon | ||
Ipomoea hederacea | 管状花目 Tubiflorae | 旋花科 Convolvulaceae | 牵牛属 Pharbitis | ||
Cakile edentula | 罂粟目 Rhoeadales | 十字花科 Cruciferae | 海马康草属 Cakile | ||
拟南芥 Arabidopsis thaliana | 罂粟目 Rhoeadales | 十字花科 Cruciferae | 拟南芥属 Arabidopsis | ||
Impatiens capensis | 无患子目 Sapindales | 凤仙花科 Balsaminaceae | 凤仙花属 Impatiens | ||
豚草 Ambrosia artemisiifolia | 桔梗目 Campanulales | 菊科 Compositae | 豚草属 Ambrosia | ||
苘麻 Abutilon theophrasti | 锦葵目 Malvales | 锦葵科 Malvaceae | 苘麻属 Abutilon | ||
多年生 Perennial | 垂序商陆 Phytolacca americana | 中央子目 Centrospermae | 商陆科 Phytolaccaceae | 商陆属 Phytolacca | |
白车轴草 Trifolium repens | 蔷薇目 Rosales | 豆科 Leguminosae | 车轴草属 Trifolium | ||
长叶车前 Plantago lanceolata | 车前目 Plantaginales | 车前科 lantaginaceae | 车前属 Plantago | ||
Artemisia tridentate | 桔梗目 Campanulales | 菊科 Compositae | 蒿属 Artemisia | ||
Solanum mauritanianum | 管状花目 Tubiflorae | 茄科 Solanaceae | 茄属 Solanum | ||
单子叶纲 Monocotyledonea | 一年生 Therophyte | 水稻 Oryza sativa | 禾本目 Graminales | 禾本科 Gramineae | 稻属 Oryzeae |
大麦 Hordeum vulgare | 禾本目 Graminales | 禾本科 Gramineae | 大麦属 Hordeum | ||
玉米 Zea may | 禾本目 Graminales | 禾本科 Gramineae | 玉蜀黍属 Zea | ||
多年生 Perennial | 发草 Deschampsia caespitosa | 禾本目 Graminales | 禾本科 Gramineae | 发草属 Deschampsia | |
Distichlis spicata | 禾本目 Graminales | 禾本科 Gramineae | 盐草属 Distichlis | ||
Triplasis purpurea | 禾本目 Graminales | 禾本科 Gramineae | 三重茅属 Triplasis |
表3 植物亲缘识别研究所用植物名单
Table 3 List of plants used in kin recognition
纲 Class | 生长周期 Growth cycle | 种 Species | 目 Order | 科 Family | 属 Genus |
---|---|---|---|---|---|
双子叶纲 Dicotyledones | 一年生 Therophyte | 大豆 Glycine max | 蔷薇目 Rosales | 豆科 Leguminosae | 大豆属 Glycine |
狭叶羽扇豆 Lupinus angustifolius | 蔷薇目 Rosales | 豆科 Leguminosae | 羽扇豆属 Lupinus | ||
豌豆 Pisum sativum | 蔷薇目 Rosales | 豆科 Leguminosae | 豌豆属 Pisum | ||
Lycopersicon lycopersicum | 管状花目 Tubiflorae | 茄科 Solanaceae | 番茄属 Lycopersicon | ||
Ipomoea hederacea | 管状花目 Tubiflorae | 旋花科 Convolvulaceae | 牵牛属 Pharbitis | ||
Cakile edentula | 罂粟目 Rhoeadales | 十字花科 Cruciferae | 海马康草属 Cakile | ||
拟南芥 Arabidopsis thaliana | 罂粟目 Rhoeadales | 十字花科 Cruciferae | 拟南芥属 Arabidopsis | ||
Impatiens capensis | 无患子目 Sapindales | 凤仙花科 Balsaminaceae | 凤仙花属 Impatiens | ||
豚草 Ambrosia artemisiifolia | 桔梗目 Campanulales | 菊科 Compositae | 豚草属 Ambrosia | ||
苘麻 Abutilon theophrasti | 锦葵目 Malvales | 锦葵科 Malvaceae | 苘麻属 Abutilon | ||
多年生 Perennial | 垂序商陆 Phytolacca americana | 中央子目 Centrospermae | 商陆科 Phytolaccaceae | 商陆属 Phytolacca | |
白车轴草 Trifolium repens | 蔷薇目 Rosales | 豆科 Leguminosae | 车轴草属 Trifolium | ||
长叶车前 Plantago lanceolata | 车前目 Plantaginales | 车前科 lantaginaceae | 车前属 Plantago | ||
Artemisia tridentate | 桔梗目 Campanulales | 菊科 Compositae | 蒿属 Artemisia | ||
Solanum mauritanianum | 管状花目 Tubiflorae | 茄科 Solanaceae | 茄属 Solanum | ||
单子叶纲 Monocotyledonea | 一年生 Therophyte | 水稻 Oryza sativa | 禾本目 Graminales | 禾本科 Gramineae | 稻属 Oryzeae |
大麦 Hordeum vulgare | 禾本目 Graminales | 禾本科 Gramineae | 大麦属 Hordeum | ||
玉米 Zea may | 禾本目 Graminales | 禾本科 Gramineae | 玉蜀黍属 Zea | ||
多年生 Perennial | 发草 Deschampsia caespitosa | 禾本目 Graminales | 禾本科 Gramineae | 发草属 Deschampsia | |
Distichlis spicata | 禾本目 Graminales | 禾本科 Gramineae | 盐草属 Distichlis | ||
Triplasis purpurea | 禾本目 Graminales | 禾本科 Gramineae | 三重茅属 Triplasis |
1 | Andalo C, Goldringer I, Godelle B (2001). Inter- and intragenotypic competition under elevated carbon dioxide in Arabidopsis thaliana.Ecology, 82, 157-164. |
2 | Argyres AZ, Schmitt J (1992). Neighbor relatedness and competitive performance in Impatiens capensis (Balsaminaceae): A test of the resource partitioning hypothesis.American Journal of Botany, 79, 181-185. |
3 | Ayre DJ, Grosberg RK (1995). Aggression, habituation, and clonal coexistence in the sea anemone Anthopleura elegantissima.American Naturalist, 146, 427-453. |
4 | Badri DV, De-la-Peña C, Lei ZT, Manter DK, Chaparro JM, Guimarães RL, Sumner LW, Vivanco JM (2012). Root secreted metabolites and proteins are involved in the early events of plant-plant recognition prior to competition.PLoS ONE, 7, e46640. |
5 | Bais HP (2015). Shedding light on kin recognition response in plants.New Phytologist, 205, 4-6. |
6 | Baldwin IT, Halitschke R, Paschold A, Von Dahl CC, Preston AC (2006). Volatile signaling in plant-plant interactions: “Talking trees” in the genomics era.Science, 311, 812-815. |
7 | Bhatt MV, Khandelwal A, Dudley SA (2011). Kin recognition, not competitive interactions, predicts root allocation in young Cakile edentula seedling pairs.New Phytologist, 189, 1135-1142. |
8 | Biedrzycki ML, Bais HP (2010). Kin recognition in plants: A mysterious behaviour unsolved.Journal of Experimental Botany, 61, 4123-4128. |
9 | Biedrzycki ML, Jilany TA, Dudley SA, Bais HP (2010). Root exudates mediate kin recognition in plants.Communicative & Integrative Biology, 3, 28-35. |
10 | Biedrzycki ML, Venkatachalam L, Bais HP (2011). Transcriptome analysis of Arabidopsis thaliana plants in response to kin and stranger recognition.Plant Signaling & Behavior, 6, 1515-1524. |
11 | Biernaskie JM (2011). Evidence for competition and cooperation among climbing plants.Proceedings of the Royal Society B: Biological Sciences, 278, 1989-1996. |
12 | Broz AK, Broeckling CD, De-La-Peña C, Lewis MR, Greene E, Callaway RM, Sumner LW, Vivanco JM (2010). Plant neighbor identity influences plant biochemistry and physiology related to defense.BMC Plant Biology, 10, 115. |
13 | Burns JH, Strauss SY (2011). More closely related species are more ecologically similar in an experimental test.Proceedings of the National Academy of Sciences of the United States of America, 108, 5302-5307. |
14 | Caffaro MM, Vivanco JM, Botto J, Rubio G (2013). Root architecture of Arabidopsis is affected by competition with neighbouring plants.Plant Growth Regulation, 70, 141-147. |
15 | Casal JJ (2013). Photoreceptor signaling networks in plant responses to shade.Annual Review of Plant Biology, 64, 403-427. |
16 | Cheplick GP, Kane KH (2004). Genetic relatedness and competition in Triplasis purpurea (Poaceae): Resource partitioning or kin selection? International Journal of Plant Sciences, 165, 623-630. |
17 | Crepy MA, Casal JJ (2015). Photoreceptor-mediated kin recognition in plants.New Phytologist, 205, 329-338. |
18 | Dawkins R (2006). The Selfish Gene (30th Anniversary edition). Oxford University Press, Oxford. |
19 | Depuydt S (2014). Arguments for and against self and non-self root recognition in plants.Frontiers in Plant Science, 5, 614. |
20 | Dierkes P, Heg D, Taborsky M, Skubic E, Achmann R (2005). Genetic relatedness in groups is sex-specific and declines with age of helpers in a cooperatively breeding cichlid.Ecology Letters, 8, 968-975. |
21 | Donohue K (2003). The influence of neighbor relatedness on multilevel selection in the Great Lakes sea rocket.The American Naturalist, 162, 77-92. |
22 | Dudley SA, File AL (2007). Kin recognition in an annual plant.Biology Letters, 3, 435-438. |
23 | Emlen ST, Wrege PH, Demong NJ (1995). Making decisions in the family: An evolutionary perspective.American Scientist, 83, 148-157. |
24 | Fang SQ, Clark RT, Zheng Y, Iyer-Pascuzzi AS, Weitz JS, Kochian LV, Edelsbrunner H, Liao H, Benfey PN (2013). Genotypic recognition and spatial responses by rice roots.Proceedings of the National Academy of Sciences of the United States of America, 110, 2670-2675. |
25 | File AL, Murphy GP, Dudley SA (2011). Fitness consequences of plants growing with siblings: Reconciling kin selection, niche partitioning and competitive ability.Proceedings of the Royal Society B: Biological Sciences, 279, 209-218. |
26 | File AL, Klironomos J, Maherali H, Dudley SA (2012). Plant kin recognition enhances abundance of symbiotic microbial partner.PLoS ONE, 7: e45648. |
27 | Goodnight CJ (1985). The influence of environmental variation on group and individual selection in a cress.Evolution, 39, 545-558. |
28 | Hamilton WD (1964). The genetical evolution of social behaviour. II.Journal of Theoretical Biology, 7, 17-52. |
29 | Hodge A (2004). The plastic plant: Root responses to heterogeneous supplies of nutrients.New Phytologist, 162, 9-24. |
30 | Hodge A (2009). Root decisions.Plant, Cell & Environment, 32, 628-640. |
31 | Hodge A (2012). Plant root interactions. In: Witzany G, Baluska F eds. Biocommunication of Plants. Springer, Berlin. 157-169. |
32 | Karban R, Baldwin IT, Baxter KJ, Laue G, Felton GW (2000). Communication between plants: Induced resistance in wild tobacco plants following clipping of neighboring sagebrush.Oecologia, 125, 66-71. |
33 | Karban R, Shiojiri K (2009). Self-recognition affects plant communication and defense.Ecology Letters, 12, 502-506. |
34 | Karban R, Shiojiri K, Ishizaki S, Wetzel WC, Evans RY (2013). Kin recognition affects plant communication and defence.Proceedings of the Royal Society B: Biological Sciences, 280, 20123062. |
35 | Keller MM, Jaillais Y, Pedmale UV, Moreno1 JE, Chory J, Ballaré CL (2011). Cryptochrome 1 and phytochrome B control shade-avoidance responses in Arabidopsis via partially independent hormonal cascades.The Plant Journal, 67, 195-207. |
36 | Lepik A, Abakumova M, Zobel K, Semchenko M (2012). Kin recognition is density-dependent and uncommon among temperate grassland plants.Functional Ecology, 26, 1214-1220. |
37 | Lin WP (2013). A Preliminary Inverstigations of Kin Altruism in Maize. Master degree dissertation, College of Agriculture, South China Agricultural University, Guangzhou.(in Chinese with English abstract). [林威鹏 (2013). 利用玉米检验植物亲缘利他假说的初探. 硕士学位论文, 华南农业大学, 广州.] |
38 | Liu XB, Liang MX, Etienne RS, Wang YF, Staehelin C, Yu SX (2012). Experimental evidence for a phylogenetic Janzen—Connell effect in a subtropical forest.Ecology Letters, 15, 111-118. |
39 | Masclaux F, Hammond RL, Meunier J, Gouhier-Darimont C, Keller L, Reymond P (2010). Competitive ability not kinship affects growth of Arabidopsis thaliana accessions.New Phytologist, 185, 322-331. |
40 | Mateo JM (2003). Kin recognition in ground squirrels and other rodents.Journal of Mammalogy, 84, 1163-1181. |
41 | Meier IC, Angert A, Falik O, Shelef O, Rachmilevitch S (2013). Increased root oxygen uptake in pea plants responding to non-self neighbors.Planta, 238, 577-586. |
42 | Mercer CA, Eppley SM (2014). Kin and sex recognition in a dioecious grass.Plant Ecology, 215, 845-852. |
43 | Milla R, Del Burgo AV, Escudero A, Iriondo JM (2012). Kinship rivalry does not trigger specific allocation strategies in Lupinus angustifolius.Annals of Botany, 110, 165-175. |
44 | Milla R, Forero DM, Escudero A, Iriondo JM (2009). Growing with siblings: A common ground for cooperation or for fiercer competition among plants?Proceedings of the Royal Society B: Biological Sciences, 276, 2531-2540. |
45 | Mommer L, van Ruijven JV, de Caluwe H, Smit-Tiekstra AE, Wagemaker CAM, Ouborg NJ, Bögemann GM, van der Weerden GM, Berendse F, de Kroon H (2010). Unveiling below-ground species abundance in a biodiversity experiment: A test of vertical niche differentiation among grassland species.Journal of Ecology, 98, 1117-1127. |
46 | Morin PA, Moore JJ, Chakraborty R, Jin L, Goodall J, Woodruff DS (1994). Kin selection, social structure, gene flow, and the evolution of chimpanzees.Science, 265, 1193-1201. |
47 | Muller CH (1946). Root Development and Ecological Relations of Guayule. United States Department of Agriculture, Economic Research Service. Washington. |
48 | Murphy GP, Dudley SA (2009). Kin recognition: Competition and cooperation in Impatiens (Balsaminaceae).American Journal of Botany, 96, 1990-1996. |
49 | Nakamura RR (1980). Plant kin selection.Evolutionary Theory, 5, 113-117. |
50 | Ninkovic V (2003). Volatile communication between barley plants affects biomass allocation.Journal of Experimental Botany, 54, 1931-1939. |
51 | Ormeño E, Fernandez C, Mévy J (2007). Plant coexistence alters terpene emission and content of Mediterranean species.Phytochemistry, 68, 840-852. |
52 | Ostrowski EA, Katoh M, Shaulsky G, Queller DC, Strassmann JE, Barton NH (2008). Kin discrimination increases with genetic distance in a social amoeba.PLoS Biology, 6, e287. |
53 | Pfennig DW, Collins JP (1993). Kinship affects morphogenesis in cannibalistic salamanders.Nature, 362, 836-838. |
54 | Schmidt DD, Baldwin IT (2006). Transcriptional responses of Solanum nigrum to methyl jasmonate and competition: A glasshouse and field study.Functional Ecology, 20, 500-508. |
55 | Schmitt J, Antonovics J (1986). Experimental studies of the evolutionary significance of sexual reproduction. IV. Effect of neighbor relatedness and aphid infestation on seedling performance.Evolution, 40, 830-836. |
56 | Sellaro R, Crepy M, Trupkin SA, Karayekov E, Buchovsky AS, Rossi C, Casal JJ (2010). Cryptochrome as a sensor of the blue/green ratio of natural radiation in Arabidopsis.Plant Physiology, 154, 401-409. |
57 | Semchenko M, Saar S, Lepik A (2014). Plant root exudates mediate neighbour recognition and trigger complex behavioural changes.New Phytologist, 204, 631-637. |
58 | Smith H (2000). Phytochromes and light signal perception by plants—An emerging synthesis.Nature, 407, 585-591. |
59 | Smukalla S, Caldara M, Pochet N, Beauvais A, Guadagnini S, Yan C, Vinces MD, Jansen A, Prevost MC, Latgé JP, Fink GR, Foster KR, Verstrepen KJ (2008). FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast.Cell, 135, 726-737. |
60 | Tonsor SJ (1989). Relatedness and intraspecific competition in Plantago lanceolata.The American Naturalist, 134, 897-906. |
61 | Weiblen GD, Webb CO, Novotny V, Basset Y, Miller SE (2006). Phylogenetic dispersion of host use in a tropical insect herbivore community.Ecology, 87(sp7), S62-S75. |
62 | Willson MF, Hoppes WG, Goldman DA, Thomas PA, Katusic- Malmborg PL, Bothwell JL (1987). Sibling competition in plants: an experimental study.American Naturalist, 129, 304-311 |
63 | Wu JQ, Baldwin IT (2009). Herbivory-induced signalling in plants: Perception and action.Plant, Cell & Environment, 32, 1161-1174. |
64 | Xiao TY, Lin WP, Cai KZ (2015). Effects of intercropping soybean varieties with different kin relationships on the growth and nitrogen utilization efficiency.Chinese Journal of Ecology, 34, 2140-2148.(in Chinese with English abstract) [肖桃艳, 林威鹏, 蔡昆争 (2013). 不同亲缘关系大豆品种间种对生长及氮素利用效率的影响. 生态学杂志, 34, 2140-2148.] |
[1] | Xing He, Tian-Quan Lu, Jiang-Ying Li, Ping Mao, Li Zhang, Guo-Wei Zheng, Bo Tian. Germplasm resources of three wood plant species enriched with nervonic acid[J]. Plant Diversity, 2022, 44(03): 308-315. |
[2] | Lei Xiang, Yanmei Li, Xiaolin Sui, Airong Li. Fast and abundant in vitro spontaneous haustorium formation in root hemiparasitic plant Pedicularis kansuensis Maxim. (Orobanchaceae)[J]. Plant Diversity, 2018, 40(05): 226-231. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||