Andolfo, G., Ruocco, M., Di Donato, A., et al., 2015. Genetic variability and evolutionary diversification of membrane ABC transporters in plants. BMC Plant Biol. 15, 51. Arteca, R.N., Arteca, J.M., 2000. A novel method for growing Arabidopsis thaliana plants hydroponically. Physiol. Plantarum 108, 188-193. Brusselmans, K., Vrolix, R., Verhoeven, G., et al., 2005. Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. J. Biol. Chem. 280, 5636-5645. Chen, H., Yu, X., Zhang, X., et al., 2018. Phospholipase Dα1-mediated phosphatidic acid change is a key determinant of desiccation-induced viability loss in seeds.Plant Cell Environ. 41, 50-63. Chen, Z., Sun, L., Liu, P., et al., 2015. Malate synthesis and secretion mediated by a manganese-enhanced malate dehydrogenase confers superior manganese tolerance in Stylosanthes guianensis. Plant Physiol. 167, 176-188. Chen, Z., Yan, W., Sun, L., et al., 2016. Proteomic analysis reveals growth inhibition of soybean roots by manganese toxicity is associated with alteration of cell wall structure and lignification. J. Proteomics 143, 151-160. Cui, W., Yao, P., Pan, J., et al., 2020. Transcriptome analysis reveals insight into molecular hydrogen-induced cadmium tolerance in alfalfa:the prominent role of sulfur and (homo) glutathione metabolism. BMC Plant Biol. 20, 58. Cushnie, T.P.T., Lamb, A.J., 2005. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 26, 343-356. Dai, L.P., Dong, X.J., Ma, H.H., 2012. Molecular mechanism for cadmium-induced anthocyanin accumulation in Azolla imbricata. Chemosphere 87, 319-325. Delhaize, E., Gruber, B.D., Pittman, J.K., et al., 2007. A role for the AtMTP11 gene of Arabidopsis in manganese transport and tolerance. Plant J. 51, 198-210. Delhaize, E., Kataoka, T., Hebb, D.M., et al., 2003. Genes encoding proteins of the cation diffusion facilitator family that confer manganese tolerance. Plant Cell 15, 1131-1142. Dewey, C.N., Li, B., 2011. RSEM:accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinf. 12, 323. Ducic, T., Polle, A., 2005. Transport and detoxification of manganese and copper in plants. Braz. J. Plant Physiol. 17, 103-112. Führs, H., Hartwig, M., Molina, L.E.B., et al., 2008. Early manganese-toxicity response in Vigna unguiculata L.-a proteomic and transcriptomic study. Proteomics 8, 149-159. Fässler, E., Plaza, S., Pairraud, A., et al., 2011. Expression of selected genes involved in cadmium detoxification in tobacco plants grown on a sulphur-amended metalcontaminated field. Environ. Exp. Bot. 70, 158-165. Fecht-Christoffers, M.M., Führs, H., Braun, H.P., et al., 2006. The role of hydrogen peroxide-producing and hydrogen peroxide-consuming peroxidases in the leaf apoplast of cowpea in manganese tolerance. Plant Physiol. 140, 1451-1463. Freeman, J.L., Garcia, D., Kim, D., et al., 2005. Constitutively elevated salicylic acid signals glutathione-mediated nickel tolerance in Thlaspi Nickel hyperaccumulators. Plant Physiol. 137, 1082-1091. Fuhrs, H., Specht, A., Erban, A., et al., 2012. Functional associations between the metabolome and manganese tolerance in Vigna unguiculata. J. Exp. Bot. 63, 329-340. Gao, J., Chen, B., Lin, H., et al., 2020. Identification and characterization of the glutathione S-transferase (GST) family in radish reveals a likely role in anthocyanin biosynthesis and heavy metal stress tolerance. Gene 743, 144484. Gonzalez, A., Steffen, K.L., Lynch, J.P., 1998. Light and excess manganese. Implications for oxidative stress in common bean. Plant Physiol. 118, 493-504. Guo, J.H., Liu, X.J., Zhang, Y., et al., 2010. Significant acidification in major Chinese croplands. Science 327, 1008-1010. Hong, Y., Pan, X., Welti, R., et al., 2008a. Phospholipase Dα3 is involved in the hyperosmotic response in Arabidopsis. Plant Cell 20, 803-816. Hong, Y., Zheng, S., Wang, X., 2008b. Dual functions of phospholipase Dα1 in plant response to drought. Mol. Plant 1, 262-269. Hong, Y., Zhao, J., Guo, L., et al., 2016. Plant phospholipases D and C and their diverse functions in stress responses. Prog. Lipid Res. 62, 55-74. Huang, H., Zhao, Y., Xu, Z., et al., 2019. Physiological responses of Broussonetia papyrifera to manganese stress, a candidate plant for phytoremediation. Ecotox.Environ. Saf. 181, 18-25. Jian, Z., Wang, C., Bedair, M., et al., 2011. Suppression of phospholipase Dgs confers increased aluminum resistance in Arabidopsis thaliana. PloS One 6, e28086. Lane, T.S., Rempe, C.S., Davitt, J., et al., 2016. Diversity of ABC transporter genes across the plant kingdom and their potential utility in biotechnology. BMC Biotechnol. 16, 47. Lei, Y., Korpelainen, H., Li, C., 2007. Physiological and biochemical responses to high Mn concentrations in two contrasting Populus cathayana populations. Chemosphere 68, 686-694. Li, J., Jia, Y., Dong, R., et al., 2019. Advances in the mechanisms of plant tolerance to manganese toxicity. Int. J. Mol. Sci. 20, 5096. Lidon, F.C., Barreiro, M.G., Ramalho, J.C., 2004. Manganese accumulation in rice:implications for photosynthetic functioning. J. Plant Physiol. 161, 1235-1244. Li, Q., Chen, L.S., Jiang, H.X., et al., 2010. Effects of manganese-excess on CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, carbohydrates and photosynthetic electron transport of leaves, and antioxidant systems of leaves and roots in Citrus grandis seedlings. BMC Plant Biol. 10, 42. Li, Q., Li, Y., Wu, X., et al., 2017. Metal transport protein 8 in Camellia sinensis confers superior manganese tolerance when expressed in yeast and Arabidopsis thaliana. Sci. Rep. 7, 39915. Liu, D., Zou, J., Wang, M., et al., 2008. Hexavalent chromium uptake and its effects on mineral uptake, antioxidant defence system and photosynthesis in Amaranthus viridis L. Bioresour. Technol. 99, 2628-2636. Liu, P., Huang, R., Hu, X., et al., 2019b. Physiological responses and proteomic changes reveal insights into Stylosanthes response to manganese toxicity. BMC Plant Biol. 19, 212. Lucchini, R., Placidi, D., Cagna, G., et al., 2017. Manganese and developmental neurotoxicity. Adv. Neurobiol. 18, 13-34. Marques, A.P.G.C., Rangel, A.O.S.S., Castro, P.M.L., 2009. Remediation of heavy metal contaminated soils:phytoremediation as a potentially promising clean-up technology. Crit. Rev. Environ. Sci. Technol. 39, 622-654. Millaleo, R., Reyes-Diaz, M., Ivanov, A.G., et al., 2010. Manganese as essential and toxic element for plants:transport, accumulation and resistance mechanisms.J. Soil Sci. Plant Nutr. 10, 470-481. Mishra, A., Sharma, A.K., Kumar, S., et al., 2013. Bauhinia variegata leaf extracts exhibit considerable antibacterial, antioxidant, and anticancer activities. BioMed Res. Int. 2013, 1-10. Nagajyoti, P.C., Lee, K.D., Sreekanth, T.V.M., 2010. Heavy metals, occurrence and toxicity for plants:a review. Environ. Chem. Lett. 8, 199-216. Nickelsen, J., Rengstl, B., 2013. Photosystem Ⅱ assembly:from cyanobacteria to plants. Annu. Rev. Plant Biol. 64, 609-635. Pan, G., Liu, W., Zhang, H., et al., 2018. Morphophysiological responses and tolerance mechanisms of Xanthium strumarium to manganese stress. Ecotox. Environ. Saf. 165, 654-661. Pandey, A.K., Mishra, A., 2012. Antifungal and antioxidative potential of oil and extracts derived from leaves of Indian spice plant Cinnamomum tamala. Cell.Mol. Biol. 58, 142-147. Peiter, E., Montanini, B., Gobert, A., et al., 2007. A secretory pathway-localized cation diffusion facilitator confers plant manganese tolerance. Proc. Natl. Acad. Sci.U. S. A. 104, 8532-8537. Pei, M., Niu, J., Li, C., et al., 2016. Identification and expression analysis of genes related to calyx persistence in Korla fragrant pear. BMC Genom. 17, 132. Sasaki, A., Yamaji, N., Xia, J., et al., 2011. OsYSL6 is involved in the detoxification of excess manganese in rice. Plant Physiol. 157, 1832-1840. Shao, J.F., Yamaji, N., Shen, R.F., et al., 2017. The key to Mn homeostasis in plants:regulation of Mn transporters. Trends Plant Sci. 22, 215-224. Sheng, H., Zeng, J., Liu, Y., et al., 2016. Sulfur mediated alleviation of Mn toxicity in polish wheat relates to regulating Mn allocation and improving antioxidant system. Front. Plant Sci. 7, 1382. Stark, R., Grzelak, M., Hadfield, J., 2019. RNA sequencing:the teenage years. Nat. Rev.Genet. 20, 631-656. Sylwia, P.S., Magdalena, A.J., Magdalena, P., et al., 2011. Activation of phenylpropanoid pathway in legume plants exposed to heavy metals. Part I. Effects of cadmium and lead on phenylalanine ammonia-lyase gene expression, enzyme activity and lignin content, 58, 211. Takemoto, Y., Tsunemitsu, Y., Fujii-Kashino, M., et al., 2017. The tonoplast-localized transporter MTP8.2 contributes to manganese detoxification in the shoots and roots of Oryza sativa L. Plant Cell Physiol. 58, 1573-1582. Tang, T., Liu, P.L., Zheng, G.W., et al., 2016. Two phases of response to long-term moderate heat:variation in thermotolerance between Arabidopsis thaliana and its relative Arabis paniculata. Phytochemistry 122, 81-90. Tang, Y.T., Qiu, R.L., Zeng, X.W., et al., 2009. Lead, zinc, cadmium hyperaccumulation and growth stimulation in Arabis paniculata Franch. Environ. Exp. Bot. 66, 126-134. Tolrà, R., Pongrac, P., Poschenrieder, C., et al., 2006. Distinctive effects of cadmium on glucosinolate profiles in Cd hyperaccumulator Thlaspi praecox and nonhyperaccumulator Thlaspi arvense. Plant Soil 288, 333-341. Tsunemitsu, Y., Genga, M., Okada, T., et al., 2018. A member of cation diffusion facilitator family, MTP11, is required for manganese tolerance and high fertility in rice. Planta 248, 231-241. Xue, Y., Wang, Y., Yao, Q., et al., 2014. Research progress of plants resistance to heavy metal Cd in soil. Ecol. Environ. Sci. 3, 528-534. Yamaji, N., Sasaki, A., Xia, J.X., et al., 2013. A node-based switch for preferential distribution of manganese in rice. Nat. Commun. 4, 2442. Yang, S., Yi, K., Chang, M.M., et al., 2019. Sequestration of Mn intothe cellwallcontributes to Mn tolerance in sugarcane (Saccharum officinarum L.). Plant Soil 436, 475-487. You, X., Yang, L.T., Lu, Y.B., et al., 2014. Proteomic changes of Citrus roots in response to long-term manganese toxicity. Trees Struct. Funct. 28, 1383-1399. You, X., Yang, L.T., Qi, Y.P., et al., 2017. Long-term manganese-toxicity-induced alterations of physiology and leaf protein profiles in two Citrus species differing in manganese-tolerance. J. Plant Physiol. 218, 249-257. Zeng, X.W., Qiu, R.L., Ying, R.R., et al., 2011. The differentially-expressed proteome in Zn/Cd hyperaccumulator Arabis paniculata Franch. in response to Zn and Cd.Chemosphere 82, 321-328. Zhai, C., Xu, P., Zhang, X., et al., 2015. Development of Gossypium anomalum-derived microsatellite markers and their use for genome-wide identification of recombination between the G. anomalum and G. hirsutum genomes. Theor.Appl. Genet. 128, 1531-1540. Zhou, C.P., Qi, Y.P., You, X., et al., 2013. Leaf cDNA-AFLP analysis of two citrus species differing in manganese tolerance in response to long-term manganese-toxicity.BMC Genom. 14, 621. Zhou, C.P., Li, C.P., Liang, W.W., et al., 2017. Identification of manganese-toxicityresponsive genes in roots of two citrus species differing in manganesetolerance using cDNA-AFLP. Trees Struct. Funct. 31, 813-831. Zhuo, Y., Wang, Z.L., Li, B.W., et al., 2009. Promotion effects of microorganisms on phytoremediation of heavy metals-contaminated soil. Chin. J. Appl. Ecol. 20, 2025-2031. |