Bankevich, A., Nurk, S., Antipov, D., et al., 2012. SPAdes:a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455-477. https://doi.org/10.1089/cmb.2012.0021. Barrett, C.F., Davis, J.I., 2012. The plastid genome of the mycoheterotrophic Corallorhiza striata (Orchidaceae) is in the relatively early stages of degradation. Am. J. Bot. 99, 1513-1523. https://doi.org/10.3732/ajb.1200256. Barrett, C.F., Freudenstein, J.V., Jeff, L., et al., 2014. Investigating the path of plastid genome degradation in an early-transitional clade of heterotrophic orchids, and implications for heterotrophic angiosperms. Mol. Biol. Evol. 31, 3095-3112. https://doi.org/10.1093/molbev/msu252. Camacho, C., Coulouris, G., Avagyan, V., et al., 2009. BLAST+:architecture and applications. BMC Bioinf. 10, 421. https://doi.org/10.1186/1471-2105-10-421. Chase, M.W., Cameron, K.M., Freudenstein, J.V., et al., 2015. An updated classification of Orchidaceae. Bot. J. Linn. Soc. 177, 151-174. https://doi.org/10.1111/boj.12234. Chen, X.Q., Gale, S.W., Cribb, P.J., 2009. Corallorhiza. In:Wu, Z.Y., Raven, P.H., Hong, D.Y. (Eds.), Flora of China, vol. 25. Beijing:Science Press; St. Louis:Missouri Botanical Garden Press, pp. 252-253. Christenhusz, M.J.M., Byng, J.W., 2016. The number of known plants species in the world and its annual increase. Phytotaxa 261, 201-217. https://doi.org/10.11646/phytotaxa.261.3.1. Darling, A.C.E., Mau, B., Blattner, F.R., et al., 2004. Mauve:multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 14, 1394-1403. https://doi.org/10.1101/gr.2289704. Freudenstein, J.V., 1997. A monograph of Corallorhiza (Orchidaceae). Harv. Pap. Bot. 1, 5-51. https://doi.org/10.2307/41761525. Freudenstein, J.V., 1999. A new species of Corallorhiza (Orchidaceae) from West Virginia. U.S.A. Novon 9, 511-513. https://doi.org/10.2307/3392151. Freudenstein, J.V., Senyo, D.M., 2008. Relationships and evolution of matK in a group of leafless orchids (Corallorhiza and Corallorhizinae; Orchidaceae:Epidendroideae). Am. J. Bot. 95, 498-505. https://doi.org/10.3732/ajb.95.4.498. Freudenstein, J.V., Yukawa, T., Luo, Y.B., 2017. A reanalysis of relationships among Calypsoinae (Orchidaceae:Epidendroideae):floral and vegetative evolution and the placement of Yoania. Syst. Bot. 42, 17-25. https://doi.org/10.1600/036364417x694944. Jin, J.J., Yu, W.B., Yang, J.B., et al., 2020. GetOrganelle:a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21, 241. https://doi.org/10.1186/s13059-020-02154-5. Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., et al., 2017. ModelFinder:fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587-589. https://doi.org/10.1038/nmeth.4285. Katoh, K., Standley, D.M., 2013. MAFFT multiple sequence alignment software version 7:improvements in performance and usability. Mol. Biol. Evol. 30, 772-780. https://doi.org/10.1093/molbev/mst010. Kearse, M., Moir, R., Wilson, A., et al., 2012. Geneious Basic:an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647-1649. https://doi.org/10.1093/bioinformatics/bts199. Khayi, S., Gaboun, F., Pirro, S., et al., 2020. Complete chloroplast genome of Argania spinosa:structural organization and phylogenetic relationships in sapotaceae. Plants 9. https://doi.org/10.3390/plants9101354. Kim, Y.K., Jo, S., Cheon, S.H., et al., 2020. Plastome evolution and phylogeny of Orchidaceae, with 24 new sequences. Fron. Plant Sci. 11, 22. https://doi.org/10.3389/fpls.2020.00022. Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870-1874. https://doi.org/10.1093/molbev/msw054. Langmead, B., Salzberg, S.L., 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357-359. https://doi.org/10.1038/nmeth.1923. Lee, S.Y., Meng, K., Wang, H., et al., 2020. Severe plastid genome size reduction in a mycoheterotrophic orchid, Danxiaorchis singchiana, reveals heavy gene loss and gene relocations. Plants 9, 521. https://doi.org/10.3390/plants9040521. Li, Z.H., Jiang, Y., Ma, X., et al., 2020. Plastid genome evolution in the subtribe Calypsoinae (Epidendroideae, Orchidaceae). Genome Biol. Evol. 12, 867-870. https://doi.org/10.1093/gbe/evaa091. Lohse, M., Drechsel, O., Bock, R., 2007. OrganellarGenomeDRAW (OGDRAW):a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr. Genet. 52, 267-274. https://doi.org/10.1007/s00294-007-0161-y. Macdougal, D.T.,Dufrenoy,J.,1944. Mycorrhizalsymbiosis in Aplectrum,Corallorhizaand Pinus. Plant Physiol. (Wash. D C) 19, 440-465. https://doi.org/10.2307/4257795. Nguyen, L.T., Schmidt, H.A., von Haeseler, A., et al., 2015. IQ-TREE:a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32 (1), 268-274. https://doi.org/10.1093/molbev/msu300. Pearce, N., Cribb, P., 1997. A revision of the genus Oreorchis (Orchidaceae). Edinb. J. Bot. 54, 289-328. https://doi.org/10.1017/S0960428600004145. Qu, X.J., Moore, M.J., Li, D.Z., et al., 2019. PGA:a software package for rapid, accurate, and flexible batch annotation of plastomes. Plant Methods 15, 50. https://doi.org/10.1186/s13007-019-0435-7. Ronquist, F., Teslenko, M., van der Mark, P., et al., 2012. MrBayes 3.2:efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539-542. https://doi.org/10.1093/sysbio/sys029. Suetsugu, K., Haraguchi, T.F., Tanabe, A.S., et al., 2020. Specialized mycorrhizal association between a partially mycoheterotrophic orchid Oreorchis indica and a Tomentella taxon. Mycorrhiza. https://doi.org/10.1007/s00572-020-00999-z. Talavera, G., Castresana, J., 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564-577. https://doi.org/10.1080/10635150701472164. Wick, R.R., Schultz, M.B., Zobel, J., et al., 2015. Bandage:interactive visualization of de novo genome assemblies. Bioinformatics 31, 3350-3352. https://doi.org/10.1093/bioinformatics/btv383. Wu, L.W., Nie, L.P., Xu, Z.C., et al., 2020. Comparative and phylogenetic analysis of the complete chloroplast genomes of three Paeonia section Moutan species(Paeoniaceae). Front. Genet. 11 https://doi.org/10.3389/fgene.2020.00980. Yukawa, T., Chung, S.W., Luo, Y.B., et al., 2003. Reappraisal of Kitigorchis (Orchidaceae). Bot. Bull. Acad. Sin. (Taipei) 44, 345-351. Zhai, J.W., Zhang, G.Q., Chen, L.J., et al., 2013. A new orchid genus, Danxiaorchis, and phylogenetic analysis of the tribe Calypsoeae. PLoS One 8, e60371. https://doi.org/10.1371/journal.pone.0060371. Zhang, D., Gao, F.L., Jakovlic, I., et al., 2020. PhyloSuite:an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 20, 348-355. https://doi.org/10.1111/1755-0998.13096. Zhu, B., Feng, Q., Yu, J., et al., 2020. Chloroplast genome features of an important medicinal and edible plant:Houttuynia cordata (Saururaceae). PLoS One 15, e0239823. https://doi.org/10.1371/journal.pone.0239823. Zimmer, K., Meyer, C., Gebauer, G., 2008. The ectomycorrhizal specialist orchid Corallorhiza trifida is a partial myco-heterotroph. New Phytol. 178, 395-400.https://doi.org/10.1111/j.1469-8137.2007.02362.x. |