Plant Diversity ›› 2023, Vol. 45 ›› Issue (03): 284-301.DOI: 10.1016/j.pld.2022.11.003
Yu-Feng Gua,b, Jiang-Ping Shub, Yi-Jun Luc, Hui Shend, Wen Shaod, Yan Zhoue, Qi-Meng Sunf, Jian-Bing Chenb, Bao-Dong Liua, Yue-Hong Yanb
收稿日期:
2022-06-27
修回日期:
2022-10-24
发布日期:
2023-07-06
通讯作者:
Bao-Dong Liu,E-mail:99bd@163.com;Yue-Hong Yan,E-mail:yhyan@sibs.ac.cn
基金资助:
Yu-Feng Gua,b, Jiang-Ping Shub, Yi-Jun Luc, Hui Shend, Wen Shaod, Yan Zhoue, Qi-Meng Sunf, Jian-Bing Chenb, Bao-Dong Liua, Yue-Hong Yanb
Received:
2022-06-27
Revised:
2022-10-24
Published:
2023-07-06
Contact:
Bao-Dong Liu,E-mail:99bd@163.com;Yue-Hong Yan,E-mail:yhyan@sibs.ac.cn
Supported by:
摘要: Cryptic species are commonly misidentified because of high morphological similarities to other species. One group of plants that may harbor large numbers of cryptic species is the quillworts (Isoëtes spp.), an ancient aquatic plant lineage. Although over 350 species of Isoëtes have been reported globally, only ten species have been recorded in China. The aim of this study is to better understand Isoëtes species diversity in China. For this purpose, we systematically explored the phylogeny and evolution of Isoëtes using complete chloroplast genome (plastome) data, spore morphology, chromosome number, genetic structure, and haplotypes of almost all Chinese Isoëtes populations. We identified three ploidy levels of Isoëtes in China-diploid (2n = 22), tetraploid (2n = 44), and hexaploid (2n = 66). We also found four megaspore and microspore ornamentation types in diploids, six in tetraploids, and three in hexaploids. Phylogenetic analyses confirmed that I. hypsophila as the ancestral group of the genus and revealed that Isoëtes diploids, tetraploids, and hexaploids do not form monophyletic clades. Most individual species possess a single genetic structure; however, several samples have conflicting positions on the phylogenetic tree based on SNPs and the tree based on plastome data. All 36 samples shared 22 haplotypes. Divergence time analysis showed that I. hypsophila diverged in the early Eocene (~48.05 Ma), and most other Isoëtes species diverged 3-20 Ma. Additionally, different species of Isoëtes were found to inhabit different water systems and environments along the Yangtze River. These findings provide new insights into the relationships among Isoëtes species in China, where highly similar morphologic populations may harbor many cryptic species.
Yu-Feng Gu, Jiang-Ping Shu, Yi-Jun Lu, Hui Shen, Wen Shao, Yan Zhou, Qi-Meng Sun, Jian-Bing Chen, Bao-Dong Liu, Yue-Hong Yan. Insights into cryptic speciation of quillworts in China[J]. Plant Diversity, 2023, 45(03): 284-301.
Yu-Feng Gu, Jiang-Ping Shu, Yi-Jun Lu, Hui Shen, Wen Shao, Yan Zhou, Qi-Meng Sun, Jian-Bing Chen, Bao-Dong Liu, Yue-Hong Yan. Insights into cryptic speciation of quillworts in China[J]. Plant Diversity, 2023, 45(03): 284-301.
[1] Abbott, R., Albach, D., Ansell, S., et al., 2013. Hybridization and speciation. J. Evol. Biol. 26, 229-246. [2] Alexander, D.H., Lange, K., 2011. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinf. 12, 1-6. [3] An, Z.S., Kutzbach, J.E., Prell, W.L., et al., 2001. Evolution of Asian monsoon and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature 411, 62-66. [4] Andrew, R., 2018. FigTree version 1.4.2:tree figure drawing tool. Available from:http://tree.bio.ed.ac.uk/software/figtree. [5] Bandelt, H.J., Dress, A.W., 1992. Split decomposition:a new and useful approach to phylogenetic analysis of distance data. Mol. Phylogenet. Evol. 1, 242-252. [6] Barker, M.S., Kane, N.C., Matvienko, M., et al., 2008. Multiple paleopolyploidizations during the evolution of the Compositae reveal parallel patterns of duplicate gene retention after millions of years. Mol. Biol. Evol. 25, 2445-2455. [7] Barrett, C.F., Baker, W.J., Comer, J.R., et al., 2016. Plastid genomes reveal support for deep phylogenetic relationships and extensive rate variation among palms and other commelinid monocots. New Phytol. 209, 855-870. [8] Bhu, I., Goswami, H.K., 1990. A new line of chromosomal evolution in Isoetes. Bionature 10, 45-53. [9] Bickford, D., Lohman, D.J., Sodhi, N.S., et al., 2007. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22, 148-155. [10] Bouckaert, R., Vaughan, T.G., Barido-Sottani, J., et al., 2019. Beast 2.5:an advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 8, e1006650. [11] Bravo, G.A., Remsen, J.V., Brumfield, R.T., 2015. Adaptive processes drive ecomorphological convergent evolution in antwrens (Thamnophilidae). Evolution 68, 2757-2774. [12] Chen, J.M., Liu, F., Gituru, W.R., et al., 2008. Chloroplast DNA phylogeography of the Chinese endemic alpine quillwort Isoetes hypsophila Hand.-Mazz. (Isoetaceae). Int. J. Plant Sci. 169, 792-798. [13] Chen, J.M., Liu, X., Wang, Q.F., 2005. Genetic diversity in Isoetes yunguiensis, a rare and endangered endemic fern in China. J. Wuhan Univ. (Nat. Sci. Ed.) 51, 767-770. [14] Chen, J.M., Wang, J.Y., Liu, X., et al., 2004. RAPD analysis for genetic diversity of Isoetes sinensis. Biodivers. Sci. 12, 348-353. [15] Choi, H.K., Jung, J., Na, H.R., et al., 2018. Molecular phylogeny and the biogeographic origin of East Asian Isoëtes (Isoëtaceae). Korean J. Plant Taxon. 48, 249-259. [16] Coates, D., 2016. Strategic Plan for Biodiversity (2011-2020) and the Aichi Biodiversity Targets:the Wetland Book I:Structure and Function, management, and methods 1-7. [17] Cuneo, R., 2009. Paleobotany:the biology and evolution of fossil plants. Ameghiniana 46, 218-218. [18] Dai, X.K., Li, X., Huang, Y.Q., et al., 2020. The speciation and adaptation of the polyploids:a case study of the Chinese Isoetes L. diploid-polyploid complex. BMC Evol. Biol. 20, 1-13. [19] Danecek, P., Auton, A., Abecasis, G., et al., 2011. The variant call format and VCFtools. Bioinformatics 27, 2156-2158. [20] Darwin, C., 1951. On the Origin of Species. sixth ed. [21] De, Q.K., 2007. Species concepts and species delimitation. Syst. Biol. 56, 879-886. [22] Devol, C.E., 1972. Isoetes found on taiwan. Taiwania 17, 1-7. [23] Dirzo, R., Raven, P.H., 2003. Global state of biodiversity and loss. Annu. Rev. Environ. Resour. 28, 137-167. [24] Feulner, P.G.D., Kirschbaum, F., Schugardt, C., et al., 2006. Electrophysiological and molecular genetic evidence for sympatrically occurring cryptic species in African weakly electric fishes (Teleostei:mormyridae:Campylomormyrus). Mol. Phylogenet. Evol. 39, 198-208. [25] Fier, C., Robinson, C.T., Malard, F., 2017. Cryptic species as a window into the paradigm shift of the species concept. Mol. Ecol. 27, 613-635. [26] Fontaneto, D., Flot, J.F.O., Tang, C.Q., 2015. Guidelines for DNA taxonomy, with a focus on the meiofauna. Mar. Biodivs. 45, 433-451. [27] Foster, C.S.P., Henwood, M.J., Simon, H.Y.W., 2018. Plastome sequences and exploration of tree-space help to resolve the phylogeny of riceflowers (Thymelaeaceae:pimelea). Mol. Phylogenet. Evol. 127, 156-167. [28] Funk, D.J., Omland, K.E., 2003. Species-Level paraphyly and polyphyly:frequency, causes, and consequences, with insights from animal mitochondrial DNA. Ann. Rev. Ecol. Evol. 34, 397-423. [29] Gentili, R., Abeli, T., Rossi, G., et al., 2010. Population structure and genetic diversity of the threatened quillwort Isoetes malinverniana and implication for conservation. Aquat. Bot. 93, 147-152. [30] Gerard, T., Jose, C., 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564-577. [31] Gifford, E.M., Foster, A.S., 1989. Morphology and Evolution of Vascular Plants. third ed. New York:W. H. Freman & Company. [32] Givnish, T.J., Ames, M., McNeal, J.R., et al., 2010. Assembling the tree of the monocotyledons:plastome sequence phylogeny and evolution of Poales. Ann. Mo. Bot. Gard. 97, 584-616. [33] Givnish, T.J., Spalink, D., Ames, M., et al., 2015. Orchid phylogenomics and multiple drivers of their extraordinary diversification. P. Roy. Soc. B-Biol. Sci. 282, 20151553. [34] Gonalves-Souza, D., Verburg, P.H., Dobrovolski, R., 2020. Habitat loss, extinction predictability and conservation efforts in the terrestrial ecoregions. Biol. Conserv. 246, 108579. [35] Grundt, H.H., Kjolner, S., Borgen, L., et al., 2006. High biological species diversity in the arctic flora. Proc. Natl. Acad. Sci. U.S.A. 103, 972-975. [36] Handel-Mazzetti, H., 1923. Isoetes hypsophila Hand.-Mazz. Akad. Wiss. Wien 13, 95. [37] Harrison, T.M., Copeland, P., Kidd, W., et al., 1992. Raising tibet. Science 255, 1663-1670. [38] Hebert, P.D.N., Penton, E.H., Burns, J.M., et al., 2004. Ten species in one:DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc. Natl. Acad. Sci. U.S.A. 101, 14812-14817. [39] Hickey, R.J., 1984. Chromosome numbers of neotropical Isoetes. Am. Fern J. 74, 9-13. [40] Hickey, R.J., 1986. Isoetes megaspore surface morphology:nomenclature, variation, and systematic importance. Am. Fern J. 76, 1-16. [41] Hinojosa, J.C., Koubinova, D., Szenteczki, M.A., et al., 2019. A mirage of cryptic species:genomics uncover striking mitonuclear discordance in the butterfly Thymelicus sylvestris. Mol. Ecol. 28, 3857-3868. [42] Hollingsworth, P.M., Li, D.Z., Michelle, v.d.B., et al., 2016. Telling plant species apart with DNA:from barcodes to genomes. Philos. T. R. Soc. B 371, 20150338. [43] Holmes, W.C., Rushing, A.E., Singhurst, J.R., 2005. Taxonomy and identification of Isoetes (Isoetaceae) in Texas based on megaspore features. Lundenllia 8, 1-6. [44] Hoot, S.B., Taylor, W.C., 2001. The utility of nuclear ITS, a LEAFY homolog intron, and chloroplast atpB-rbcL spacer region data in phylogenetic analyses and species delimitation in Isoetes. Am. Fern J. 91, 166-177. [45] Ito, Y., Tanaka, N., Barfod, A.S., et al., 2019. Molecular phylogenetic species delimitation in the aquatic genus Ottelia (Hydrocharitaceae) reveals cryptic diversity within a widespread species. J. Plant Res. 132, 335-344. [46] Jansen, R.K., Saski, C., Lee, S.B., et al., 2011. Complete plastid genome sequences of three Rosids (Castanea, Prunus, Theobroma):evidence for at least two independent transfers of rpl22 to the nucleus. Mol. Biol. Evol. 28, 835-847. [47] Jiang, R.H., Zhang, X.C., Liu, Y., 2011. Asplenium cornutissimum (Aspleniaceae), a new species from karst caves in Guangxi, China. Brittonia 63, 83-86. [48] Jin, J.J., Yu, W.B., Yang, J., et al., 2020. GetOrganelle:a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21, 1-31. [49] Joppa, L.N., Roberts, D.L., Pimm, S.L., 2011. How many species of flowering plants are there? P. Roy. Soc. B-Biol. Sci. 278, 554-559. [50] Julio, R., Albert, F.M., Carlos, S.-D.J., et al., 2017. DnaSP 6:DNA Sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299-3302. [51] Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., et al., 2017. ModelFinder:fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587-589. [52] Kang, M., Ye, Q.G., Huang, H.W., 2005. Genetic consequence of restricted habitat and population decline in endangered Isoetes sinensis (Isoetaceae). Ann. Bot. 96, 1265-1274. [53] Karol, K.G., Arumuganathan, K., Boore, J.L., et al., 2010. Complete plastome sequences of Equisetum arvense and Isoetes flaccida:implications for phylogeny and plastid genome evolution of early land plant lineages. BMC Evol. Biol. 10, 321. [54] Kim, C., Shin, H., Chang, Y.T., et al., 2010. Speciation pathway of Isoetes (Isoetaceae) in East Asia inferred from molecular phylogenetic relationships. Am. J. Bot. 2010, 97, 958-969. [55] Kim, C., Na, H.R., Choi, H.K., 2008. Genetic diversity and population structure of endangered Isoetes coreana in South Korea based on RAPD analysis. Aquat. Bot. 89, 43-49. [56] Kim, C.K., Choi, H.K., 2016. Biogeography of North Pacific Isoetes (Isoetaceae) inferred from nuclear and chloroplast DNA sequence data. J. Plant Biol. 59, 386-396. [57] Krug, P.J., Vendetti, J.E., Rodriguez, A.K., et al., 2013. Integrative species delimitation in photosynthetic sea slugs reveals twenty candidate species in three nominal taxa studied for drug discovery, plastid symbiosis or biological control. Mol. Phylogenet. Evol. 69, 1101-1119. [58] Larsen, E., Wikstrom, N., Khodabandeh, A., et al., 2022. Phylogeny of Merlin's grass (Isoetaceae):revealing an "Amborella syndrome" and the importance of geographic distribution for understanding current and historical diversity. BMC Ecol. Evol. 22, 1-17. [59] Lees, A.C., Pimm, S.L., 2015. Species, extinct before we know them? Curr. Biol. 25, R177-R180. [60] Lellinger, D.B., Taylor, W.C., 1997. A classification of spore ornamentation in the pteridophyta. In R.J. John (Ed.), Holttum Memorial Volume London:Kew:Royal Botanical Garden. [61] Li, H., Handsaker, B., Wysoker, A., et al., 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078-2079. [62] Li, X., Huang, Y.Q., Dai, X.K., et al., 2019. Isoetes shangrilaensis, a new species of Isoetes from Hengduan mountain region of Shangri-la, Yunnan. Phytotaxa 397, 65-73. [63] Li, X.J., Li, J.X., Meng, F.Y., 2018. A new species of Hypodematium (Hypodematiaceae) from China. PhytoKeys 92, 37-44. [64] Li, X.W., Yang, F., Henry, R.J., et al., 2015. Plant DNA barcoding:from gene to genome. Biol. Rev. 90, 157-166. [65] Li, Z.Z., Ngarega, B.K., Lehtonen, S., et al., 2020. Cryptic diversity within the African aquatic plant Ottelia ulvifolia (Hydrocharitaceae) revealed by population genetic and phylogenetic analyses. J. Plant Res. 133, 1-9. [66] Liu, H., Wang, Q.F., Taylor, W.C., 2005. Isoetes orientalis (Isoetaceae), a new hexaploid quillwort from China. Novon 15, 164-167. [67] Liu, J., Moller, M., Gao, L.M., et al., 2015. DNA barcoding for the discrimination of Eurasian yews (Taxus L., Taxaceae) and the discovery of cryptic species. Mol. Ecol. Resour. 11, 89-100. [68] Liu, J.J., Slik, F., Zheng, S.L., et al., 2022. Undescribed species have higher extinction risk than known species. Conserv. Lett. 15, 1-8. [69] Liu, L., Pearl, D.K., 2007. Species trees from gene trees:reconstructing Bayesian posterior distributions of a species phylogeny using estimated gene tree distributions. Syst. Biol. 56, 504-514. [70] Liu, X., Gituru, W.R., Wang, Q.F., 2004. Distribution of basic diploid and polyploid species of Isoetes in East Asia. J. Biogeogr. 31, 1239-1250. [71] Liu, X., Liu, H., Wang, Q.F., 2008. Spore morphology of Isoetes (Isoetaceae) from China. Acta Phytotaxon. Sin. 46, 479-489. [72] Liu, X., Wang, Y., Wang, Q.F., et al., 2002. Chromosome numbers of the Chinese Isoetes and their taxonomical significance. Acta Phytotaxon. Sin. 40, 351-356. [73] Lombard, L., Crous, P.W., Wingfield, B.D., et al., 2010. Multigene phylogeny and mating tests reveal three cryptic species related to Calonectria pauciramosa. Stud. Mycol. 66, 15-30. [74] Lu, J.M., Zhang, N., Du, X.Y., et al., 2015. Chloroplast phylogenomics resolves key relationships in ferns. J. Systemat. Evol. 53, 448-457. [75] Lu, Y.J., Gu, Y.F., Yan, Y.H., 2021. Isoetes baodongii (Isoetaceae), a new basic diploid species of quillwort from China. Novon 29, 206-210. [76] Maddison, W.P., 1997. Gene trees in species trees. Syst. Biol. 3, 523-536. [77] Maddison, W.P., Lacey, K.L., 2006. Inferring phylogeny despite incomplete lineage sorting. Syst. Biol. 55, 21-30. [78] Malcolm, J.R., Liu, C., Neilson, R.P., et al., 2010. Global warming and extinctions of endemic species from biodiversity hotspots. Conserv. Biol. 20, 538-548. [79] Mallet, J., 2007. Hybrid speciation. Nature 446, 279-283. [80] May, R.M., 1988. How many species are there on earth? Science 241, 1441-1449. [81] May, R.M., 1990. How many species? Philos. T. R. Soc. B 330, 293-303. [82] Meng, F.S., 1998. Studies on Annalepis from middle triassic along the YangZi river and ITS bearing on the origin of Isoetes. J. Integr. Plant Biol. 8, 89-95. [83] Meng, F.S., Zhang, Z.L., Niu, Z.J., et al., 2000. Primitive Lycopsid Flora in the Yangtze Valley of China and Systematics and Evolution of Isoetales. Changsha, Hunan:Hunan Science and Technology Press. [84] Moraolivo, A., Mendozaruiz, A., Martinezavalos, J.G., 2016. Isoetes tamaulipana (Isoetaceae), a new species from Mexico. Phytotaxa 267, 113-120. [85] Nguyen, L.T., Schmidt, H.A., Arndt, V.H., et al., 2015. IQ-TREE:a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268-274. [86] Nie, Y., Foster, C.S., Zhu, T., et al., 2020. Accounting for uncertainty in the evolutionary timescale of green plants through clock-partitioning and fossil calibration strategies. Syst. Biol. 69, 1-16. [87] Nygren, A., 2014. Cryptic polychaete diversity:a review. Zool. Scripta 43, 172-183. [88] Palmer, T.C., 1927. A Chinese Isoetes-I. sinensis. Am. Fern J. 7, 111-113. [89] Pang, X.A., Wang, Q.F., Robert, G.W., et al., 2003. A preliminary study of crassulacean acid metabolism (CAM) in the endangered aquatic quillwort Isoetes sinensis Palmer in China. Wuhan Univ. J. Nat. Sci. 8, 455-458. [90] Pante, E., Puillandre, N., Viricel, A., et al., 2015. Species are hypotheses:avoid connectivity assessments based on pillars of sand. Mol. Ecol. 24, 525-544. [91] Pereira, J.B.D.S., Salino, A., Arrdua, A., et al., 2016. Two new species of Isoetes (Isoetaceae) from northern Brazil. Phytotaxa 272, 141-148. [92] Pereira, J.B.S., Giulietti, A.M., Pires, E.S., et al., 2021a. Chloroplast genomes of key species shed light on the evolution of the ancient genus Isoetes. J. Systemat. Evol. 59, 421-441. [93] Pereira, J.B.S., Giulietti, A.M., Prado, J., et al., 2021b. Plastome-based phylogenomics elucidate relationships in rare Isoetes species groups from the Neotropics. Mol. Phylogenet. Evol. 161, 107177. [94] Pereira, J.B.S., Guimaraes, J.T.F., Watanabe, M.T.C., 2019a. Isoetes dubsii and Isoetes santacruzensis, two new species from lowland areas in South America. PhytoKeys 131, 57-67. [95] Pereira, J.B.S., Labiak, P.H., Thomas, S., et al., 2019b. Nuclear multi-locus phylogenetic inferences of polyploid Isoetes species (Isoetaceae) suggest several unknown diploid progenitors and a new polyploid species from South America. Bot. J. Linn. Soc. 189, 6-22. [96] Pereira, J.B.S., Stutzel, T., Schulz, C., 2017. Isoetes nana, a new species from the coastal mountains of southeastern Brazil. PhytoKeys 89, 91-105. [97] Peter, T., Douady, C.J., Cene, F., et al., 2009. A molecular test for cryptic diversity in ground water:how large are the ranges of macro-stygobionts? Freshw. Biol. 54, 727-744. [98] Peters, J.L., Zhuravlev, Y., Fefelov, I., et al., 2007. Nuclear loci and coalescent methods suppot ancient hybridization as cause of mitochondrial paraphyly between gadwall and falcated duck (Anas spp.). Evolution 61, 1992-2006. [99] Pfeiffer, N.E., 1922. Monograph on the Isoetaceae. Ann. Mo. Bot. Gard. 9, 79-233. [100] Pigg, K.B., 1992. Evolution of isoetalean lycopsids. Ann. Mo. Bot. Gard. 79, 589-612. [101] Pigg, K.B., 2001. Isoetalean lycopsid evolution:from the Devonian to the present. Am. Fern J. 91, 99-114. [102] Pillon, Y., Hopkins, H., Munzinger, J., et al., 2010. Cryptic species, gene recombination and hybridization in the genus Spiraeanthemum (Cunoniaceae) from New Caledonia. Bot. J. Linn. Soc. 161, 137-152. [103] Pimm, S.L., Jenkins, C.N., Abell, R., et al., 2014. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752. [104] Prance, G.T., Beentje, H., Dransfield, J., et al., 2000. The Tropical flora remains under collected. Ann. Mo. Bot. Gard. 87, 67-71. [105] Ranker, T.A., 1993. Spores of the Pteridophyta:surface, wall structure, and diversity based on electron microscope studies. Syst. Bot. 18, 377. [106] Rieseberg, L.H., Willis, J.H., 2007. Plant speciation. Science 317, 910-914. [107] Romero, M.I., Real, C. 2015. A morphometric study of three closely related taxa in the European Isoetes velata complex. Bot. J. Linn. Soc. 148, 459-464. [108] Ronquist, F., Teslenko, M., van der Mark, P., et al., 2012. MrBayes 3.2:efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539-542. [109] Ross, T.G., Barrett, C.F., Gomez, M.S., et al., 2016. Plastid phylogenomics and molecular evolution of Alismatales. Cladistics 32, 160-178. [110] Ruhfel, B.R., Gitzendanner, M.A., Soltis, P.S., et al., 2014. From algae to angiosperms-inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evol. Biol. 14, 23. [111] Saez, A.G., Lozano, E., 2005. Body doubles. Nature 433, 111. [112] Santos, M.P., Araujo, J.V.S.R., Lopes, A.V.S.A., et al., 2020. The genetic diversity and population structure of two endemic Amazonian quillwort (Isoetes L.) species. PeerJ 8, e10274. [113] Schafran, P.W., 2019. Molecular systematics of Isoetes (Isoetaceae) in Eastern North America. Doctor of Philosophy (PhD), Dissertation, Biological Sciences, Old Dominion University. [114] Schafran, P.W., Leonard, S.W., Bray, R.D., et al., 2016. Isoetes mississippiensis:a new quillwort from Mississippi, USA. PhytoKeys 74, 97-106. [115] Schafran, P.W., Zimmer, E.A., Taylor, W.C., et al., 2018. A whole chloroplast genome phylogeny of diploid species of Isoetes (Isoetaceae, Lycopodiophyta) in the Southeastern United States. Castanea 83, 224-235. [116] Scheffers, B.R., Joppa, L.N., Pimm, S.L., et al., 2012. What we know and don't know about earth's missing biodiversity. Trends Ecol. Evol. 27, 501-510. [117] Shang, H., Xue, Z.Q., Gu, Y.F., et al., 2020. Revision of the fern genus Didymochlaena (didymochlaenaceae) from Madagascar. Phytotaxa 459, 252-264. [118] Shu, J.P., Gu, YF, Ou, ZG, et al., 2022. Two new tetraploid quillwort species, Isoetes longpingii and I. xiangfei from China. Guihaia 42, 1623-1631. [119] Simpson, G.G., 1961. Principles of Animal Taxonomy. Columbia University Press, New York. [120] Smolders, A.J.P., Lucassen, E.C.H.R.T., Roelofs, J.G.M., 2002. The isoetid environment:biogeochemistry and threats. Aquat. Bot. 73, 325-350. [121] Struck, T.H., Feder, J.L., Bendiksby, M., et al., 2018. Finding evolutionary processes hidden in cryptic species. Trends Ecol. Evol. 33, 153. [122] Suissa, J.S., Kinosian, S.P., Schafran, P.W., et al., 2020. Revealing the evolutionary history of a reticulate polyploid complex in the genus Isoetes. bioRxiv, https://doi.org/https://doi.org/10.1101/2022.11.11.516104. [123] Takamiya, M., Watanabe, M., Ono, K., 1994. Biosystematic studies on the genus Isoetes in Japan I. Variations of the somatic chromosome numbers. J. Plant Res. 107, 289-297. [124] Taylor, W.C., Hickey, R.J., 1992. Habitat, evolution, and speciation in Isoetes. Ann. Mo. Bot. Gard. 79, 613-622. [125] Taylor, W.C., Lekschas, A.R., Wang, Q.F., et al., 2004. Phylogenetic relationships of Isoetes (Isoetaceae) in China as revealed by nucleotide sequences of the nuclear ribosomal ITS region and the second Intron of a LEAFY Homolog. Am. Fern J. 94, 196-205. [126] Thompson, M.S.A., Couce, E., Webb, T.J., et al., 2020. What's hot and what's not:making sense of biodiversity 'hotspots'. Global Change Biol. 27, 521-535. [127] Tollefson, J., 2019. Humans are driving one million species to extinction. Nature 569, 171-172. [128] Troia, A., Pereira, J.B., Kim, C., et al., 2016. The genus Isoetes (Isoetaceae):a provisional checklist of the accepted and unresolved taxa. Phytotaxa 277, 101-145. [129] Vrijenhoek, R.C., Schutz, S.J., Gustafson, R.G., et al., 1994. Cryptic species of deep-sea clams (Mollusca:Bivalvia:vesicomyidae) from hydrothermal vent and cold-water seep environments-ScienceDirect. Deep-Sea Res. Pt. I 41, 1171-1189. [130] Vuuren, D.P.v., Sala, O.E., Pereira, H.M., 2006. The future of vascular plant diversity under four global scenarios. Ecol. Soc. 11, 3213-3217. [131] Wang, H., Dai, J., Chen, Z., et al., 2022. Selaginella orientali-chinensis, a new resurrection spikemoss species from southeastern China based on morphological and molecular evidences. Acta Sci. Nat. Univ. Sunyatseni 61, 57-64. [132] Wang, J.Y., Gituru, R.W., Wang, Q.F., 2006. Ecology and conservation of the endangered quillwort Isoetes sinensis in China. Egypt. J. Nat. Hist. 39, 4069-4079. [133] Wang, Q.F., Liu, X., Taylor, W.C., et al., 2002. Isoetes yunguiensis (Isoetaceae), a new basic diploid quillwort from China. Novon 12, 587-591. [134] Wang, Q.X., Dai, X.L., 2010. Spores of Polypodiales (Filicales) from China. Beijing:Science Press. [135] Wang, Q.X., Yu, J., 2003. Classification of spore ornamentation in Filicales under SEM. Acta Bot. Yunnanica 25, 313-320. [136] Watanabe, M., Takamiya, M., Matsusaka, T., et al., 1996. Biosystematic studies on the genus Isoetes (Isoetaceae) in Japan. III. Variability within qualitative and quantitative morphology of spores. J. Plant Res. 109, 281-296. [137] Wei, R., Yan, Y.H., Harris, A.J., et al., 2017. Plastid phylogenomics resolve deep relationships among eupolypod II ferns with rapid radiation and rate heterogeneity. Genome Biol. Evol. 9, 1646-1657. [138] Wei, R., Zhang, X.C., 2019. Phylogeny of Diplazium (Athyriaceae) revisited:resolving the backbone relationships based on plastid genomes and phylogenetic tree space analysis. Mol. Phylogenet. Evol. 143, 106699. [139] Wei, R., Zhang, X.C., 2022. A revised subfamilial classification of Polypodiaceae based on plastome, nuclear ribosomal, and morphological evidence. Toxon 71, 288-306. [140] Wei, Z.Y., Xia, Z.Q., Shu, J.P., et al., 2021. Phylogeny and taxonomy on cryptic species of forked ferns of Asia. Front. Plant Sci. 12, 748562. [141] Welch, A.J., Collins, K., Ratan, A., et al., 2016. The quest to resolve recent radiations:plastid phylogenomics of extinct and endangered Hawaiian endemic mints (Lamiaceae). Mol. Phylogenet. Evol. 99, 16-33. [142] Wick, R.R., Schultz, M.B., Justin, Z., et al., 2015. Bandage:interactive visualization of de novo genome assemblies. Bioinformatics 31, 3350-3352. [143] Winker, K., 2005. Sibling species were first recognized by William Derham (1718). Auk. 122, 706-707. [144] Wood, D., Besnard, G., Beerling, D.J., et al., 2020. Phylogenomics indicates the "living fossil" Isoetes diversified in the Cenozoic. PLoS One 15, e0227525. [145] Xie, Y.C., Cheng, H.S., Chen, Y., et al., 2019. Complete chloroplast genome of Isoetes sinensis, an endemic fern in China. Mitochondrial DNA B 4, 3276-3277. [146] Xu, K.W., Lin, C.X., Guo, J.Q., et al., 2022. Asplenium danxiaense sp. nov. (Aspleniaceae, Aspleniineae), a new tetraploid fern species from Guangdong, China, based on morphological and molecular data. Eur. J. Taxon. 798, 162-173. [147] Xu, K.W., Lorence, D., Wood, KR, et al., 2019a. A revision of the Hymenasplenium unilaterale subclade (Aspleniaceae; Pteridophyta) with the description of nine new species. Phytotaxa 419, 1-27. [148] Xu, K.W., Chen, C.W., Kamau, P., et al., 2019b. Four new species of the fern genus Hymenasplenium (Aspleniaceae) from africa and Asia. Phytotaxa 416, 34-42. [149] Yang, J., Huang, Y., Jiang, X., et al., 2022. Potential geographical distribution of the endangered plant Isoetes under human activities using MaxEnt and GARP. Global Ecol. Conser. 38, e02186. [150] Ye, Q.G., Li, J.Q. 2003. Distribution status and causation of endangerment of Isoetes sinensis palmer in Zhejiang Province. J. Wuhan Bot. Res. 21, 216-220. [151] Yi, T.S., Jin, G.H., Wen, J., 2015. Chloroplast capture and intra- and inter-continental biogeographic diversification in the Asian-new World disjunct plant genus Osmorhiza (Apiaceae). Mol. Phylogenet. Evol. 85, 10-21. [152] Yu, J.H., Zhang, R., Liu, Q.L., et al., 2022. Ceratopteris chunii and Ceratopteris chingii (Pteridaceae), two new diploid species from China, based on morphological, cytological, and molecular data. Plant Divers. 44, 300-307. [153] Zhang, D., Gao, F., Jakovli, I., et al., 2020a. PhyloSuite:an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 20, 348-355. [154] Zhang, R., Wang, F.G., Zhang, J., et al., 2019. Dating whole genome duplication in Ceratopteris thalictroides and potential adaptive values of retained gene duplicates. Int. J. Mol. Sci. 20, 1926. [155] Zhang, R., Yu, J.H., Shao, W., et al., 2020b. Ceratopteris shingii, a new species of Ceratopteris with creeping rhizomes from Hainan, China. Phytotaxa 449, 23-30. |
[1] | Xin-Mao Zhou, Li-Bing Zhang. Phylogeny, character evolution, and classification of Selaginellaceae(lycophytes)[J]. Plant Diversity, 2023, 45(06): 630-684. |
[2] | Zhe Chen, Zhuo Zhou, Ze-Min Guo, Truong Van Do, Hang Sun, Yang Niu. Historical development of karst evergreen broadleaved forests in East Asia has shaped the evolution of a hemiparasitic genus Brandisia (Orobanchaceae)[J]. Plant Diversity, 2023, 45(05): 501-512. |
[3] | Hai-Su Hu, Jiu-Yang Mao, Xue Wang, Yu-Ze Liang, Bei Jiang, De-Quan Zhang. Plastid phylogenomics and species discrimination in the “Chinese” clade of Roscoea (Zingiberaceae)[J]. Plant Diversity, 2023, 45(05): 523-534. |
[4] | Xue-Min Xu, Dan-Hui Liu, Shi-Xin Zhu, Zhen-Long Wang, Zhen Wei, Quan-Ru Liu. Phylogeny of Trigonotis in China—with a special reference to its nutlet morphology and plastid genome[J]. Plant Diversity, 2023, 45(04): 409-421. |
[5] | Yi Jin, Hong Qian. U.PhyloMaker:An R package that can generate large phylogenetic trees for plants and animals[J]. Plant Diversity, 2023, 45(03): 347-352. |
[6] | Xing Liu, Hui-Min Cai, Wen-Qiao Wang, Wei Lin, Zhi-Wei Su, Zhong-Hui Ma. Why is the beautyberry so colourful? Evolution, biogeography, and diversification of fruit colours in Callicarpa (Lamiaceae)[J]. Plant Diversity, 2023, 45(01): 6-19. |
[7] | Han-Yang Lin, Miao Sun, Ya-Jun Hao, Daijiang Li, Matthew A. Gitzendanner, Cheng-Xin Fu, Douglas E. Soltis, Pamela S. Soltis, Yun-Peng Zhao. Phylogenetic diversity of eastern Asia-eastern North America disjunct plants is mainly associated with divergence time[J]. Plant Diversity, 2023, 45(01): 27-35. |
[8] | Mei-Zhen Wang, Xiao-Kai Fan, Yong-Hua Zhang, Jing Wu, Li-Mi Mao, Sheng-Lu Zhang, Min-Qi Cai, Ming-Hong Li, Zhang-Shi-Chang Zhu, Ming-Shui Zhao, Lu-Xian Liu, Kenneth M. Cameron, Pan Li. Phylogenomics and integrative taxonomy reveal two new species of Amana (Liliaceae)[J]. Plant Diversity, 2023, 45(01): 54-68. |
[9] | Hong-Hu Meng, Can-Yu Zhang, Shook Ling Low, Lang Li, Jian-Yong Shen, Nurainas, Yu Zhang, Pei-Han Huang, Shi-Shun Zhou, Yun-Hong Tan, Jie Li. Two new species from Sulawesi and Borneo facilitate phylogeny and taxonomic revision of Engelhardia (Juglandaceae)[J]. Plant Diversity, 2022, 44(06): 552-564. |
[10] | Yi Jin, Hong Qian. V.PhyloMaker2:An updated and enlarged R package that can generate very large phylogenies for vascular plants[J]. Plant Diversity, 2022, 44(04): 335-339. |
[11] | Jun-Hao Yu, Rui Zhang, Qiao-Ling Liu, Fa-Guo Wang, Xun-Lin Yu, Xi-Ling Dai, Yong-Bo Liu, Yue-Hong Yan. Ceratopteris chunii and Ceratopteris chingii (Pteridaceae), two new diploid species from China, based on morphological, cytological, and molecular data[J]. Plant Diversity, 2022, 44(03): 300-307. |
[12] | Lei Huang, Fang-Dong Geng, Jing-Jing Fan, Wei Zhai, Cheng Xue, Xiao-Hui Zhang, Yi Ren, Ju-Qing Kang. Evidence for two types of Aquilegia ecalcarata and its implications for adaptation to new environments[J]. Plant Diversity, 2022, 44(02): 153-162. |
[13] | Zheng-Yu Zuo, Ting Zhao, Xin-Yu Du, Yun Xiong, Jin-Mei Lu, De-Zhu Li. A revision of Dryopteris sect. Diclisodon (Dryopteridaceae) based on morphological and molecular evidence with description of a new species[J]. Plant Diversity, 2022, 44(02): 181-190. |
[14] | Zhen-Yu Lv, Ziyoviddin Yusupov, Dai-Gui Zhang, Ya-Zhou Zhang, Xiao-Shuang Zhang, Nan Lin, Komiljon Tojibaev, Hang Sun, Tao Deng. Oreocharis xieyongii, an unusual new species of Gesneriaceae from western Hunan, China[J]. Plant Diversity, 2022, 44(02): 222-230. |
[15] | Ying-Min Zhang, Li-Jun Han, Cong-Wei Yang, Zi-Li Yin, Xing Tian, Zi-Gang Qian, Guo-Dong Li. Comparative chloroplast genome analysis of medicinally important Veratrum (Melanthiaceae) in China: Insights into genomic characterization and phylogenetic relationships[J]. Plant Diversity, 2022, 44(01): 70-82. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||