[1] Adhikari, N. D., Bates, P. D., Browse, J. (2016). WRINKLED1 rescues feed back inhibition of fatty acid synthesis in hydroxylase-expressing seeds. PlantPhysiol. 171, 179-191.doi: 10.1104/pp.15.01906 [2] Bates, P. D., Stymne, S., Ohlrogge, J. (2013). Biochemical pathways in seed oil synthesis. Curr. Opin. Plant Biol., 16(3), 358-364, https://doi.org/10.1016/j.pbi.2013.02.015 [3] Baud, S., Lepiniec, L. (2010). Physiological and developmental regulation of seed oil production. Prog. Lipid Res., 49(3), 235-249, https://doi.org/10.1016/j.plipres.2010.01.001 [4] Baud, S., Mendoza, M. S., To, A., Harscoet, E., Lepiniec, L., Dubreucq, B. (2007). WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis. Plant J., 50(5), 825-838, https://doi.org/10.1111/j.1365-313X.2007.03092.x [5] Baud, S., Wuilleme, S., To, A., Rochat, C., Lepiniec, L. (2009). Role of WRINKLED1 in the transcriptional regulation of glycolytic and fatty acid biosynthetic genes in Arabidopsis. Plant J., 60(6), 933-947, https://doi.org/10.1111/j.1365-313X.2009.04011.x [6] Cahoon, E. B., Shockey, J. M., Dietrich, C. R., Gidda, S. K., Mullen, R. T., Dyer, J. M. (2007). Engineering oilseeds for sustainable production of industrial and nutritional feedstocks: solving bottlenecks in fatty acid flux. Curr. Opin. Plant Biol., 10(3), 236-244, https://doi.org/10.1016/j.pbi.2007.04.005 [7] Cao, Y., Zeng, H., Ku, L., Ren, Z., Han, Y., Su, H., Dou, D., Liu, H., Dong, Y., Zhu, F., Li, T., Zhao, Q., Chen, Y. (2020). ZmIBH1-1 regulates plant architecture in maize. J. Exp. Bot., 71(10), 2943-2955, https://doi.org/10.1093/jxb/eraa052 [8] Cernac, A., Benning, C. (2004). WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J., 40(4), 575-585, https://doi.org/10.1111/j.1365-313X.2004.02235.x [9] Chapman, K. D., Ohlrogge, J. B. (2012). Compartmentation of triacylglycerol accumulation in plants. J. Biol. Chem., 287(4), 2288-2294, https://doi.org/10.1074/jbc.R111.290072 [10] Chen, L., Zheng, Y., Dong, Z., Meng, F., Sun, X., Fan, X., Zhang, Y., Wang, M., Wang, S. (2018). Soybean (Glycine max) WRINKLED1 transcription factor, GmWRI1a, positively regulates seed oil accumulation. Mol. Genet. Genom., 293(2), 401-415, https://doi.org/10.1007/s00438-017-1393-2 [11] da Silva, N. L., Maciel, M. R., Batistella, C. B., Maciel, F. R. (2006). Optimization of biodiesel production from castor oil. Appl. Biochem. Biotechnol.,130, 405-414, https://doi.org/10.1385/abab:130:1:405 [12] da Silva Romas, L. C., Tango, S. J., Savi, A. & Leal, N. R. (1984). Variability for oil and fatty acid composition in castor bean varieties. J. Am. Oil Chem. Soc., 61, 1841-1843. doi.org/10.1007/BF02540812 [13] Focks, N., Benning, C. (1998). wrinkled 1: a novel, low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism. Plant Physiol., 118(1), 91-101, https://doi.org/10.1104/pp.118.1.91 [14] Gibson, D. G., Young, L., Chuang, R. Y., Venter, J. C., Hutchison, C. A., Smith, H. O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods, 6(5), 343-345, https://doi.org/10.1038/nmeth.1318 [15] Goodrum, J. W., Geller, D. P. (2005). Influence of fatty acid methyl esters from hydroxylated vegetable oils on diesel fuel lubricity. Bioresour. Technol., 96(7), 851-855, https://doi.org/10.1016/j.biortech.2004.07.006 [16] Han, B., Xu, H., Feng, Y., Xu, W., Cui, Q., Liu, A. (2020). Genomic characterization and expressional profiles of autophagy-related genes (ATGs) in oilseed crop Castor bean (ricinuscommunis L.). Int. J. Mol. Sci., 21(2), doi:10.3390/ijms21020562 [17] Haque, M. E., Han, B., Wang, B., Wang, Y., Liu, A. (2018). Development of an efficient chromatin immunoprecipitation method to investigate protein-DNA interaction in oleaginous castor bean seeds. PLoS One, 13(5), e0197126, https://doi.org/10.1371/journal.pone.0197126 [18] Hara, A., Radin, N. S. (1978). Lipid extraction of tissues with a low-toxicity solvent. Anal. Biochem., 90: 420-426, https://doi.org/10.1016/0003-2697(78)90046-5 [19] Izadi-Darbandi, A., Younessi-Hamzekhanlu, M., Sticklen, M. (2020). Metabolically engineered rice biomass and grain using genes associated with lipid pathway show high level of oil content. Mol. Biol. Rep., 47(10), 7917-7927, https://doi.org/10.1007/s11033-020-05837-1 [20] Ji, X. J., Mao, X., Hao, Q. T., Liu, B. L., Xue, J. A., Li, R. Z. (2018). Splice variants of the Castor WRI1 gene upregulate fatty acid and oil biosynthesis when expressed in tobacco leaves. Int. J. Mol. Sci., 19(1), 146, https://doi.org/10.3390/ijms19010146 [21] Kong, Q., Ma, W., Yang, H. B., Ma, G. J., Mantyla, J. J., Benning, C. (2017). The Arabidopsis WRINKLED1 transcription factor affects auxin homeostasis in roots. J. Exp. Bot., 68(16), 4627-4634, https://doi.org/10.1093/jxb/erx275 [22] Kumar, S., Stecher, G., Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol., 33(7), 1870-1874, https://doi.org/10.1093/molbev/msw054 [23] Letunic, I., Bork, P. (2018). 20 years of the SMART protein domain annotation resource. Nucleic Acids Res., 46, 493-496, https://doi.org/10.1093/nar/gkx922 [24] Li, Y., Beisson, F., Pollard, M., Ohlrogge, J. J. P. (2006). Oil content of Arabidopsis seeds: the influence of seed anatomy, light and plant-to-plant variation. Phytochemistry, 67: 904-915. doi.org/10.1016/j.phytochem.2006.02.015 [25] Ma, W., Kong, Q., Arondel, V., Kilaru, A., Bates, P. D., Thrower, N. A., Benning, C., Ohlrogge, J. B. (2013). Wrinkled 1, a ubiquitous regulator in oil accumulating tissues from Arabidopsis embryos to oil palm mesocarp. PLoS One, 8(7), e68887, https://doi.org/10.1371/journal.pone.0068887 [26] Maeo, K., Tokuda, T., Ayame, A., Mitsui, N., Kawai, T., Tsukagoshi, H., Ishiguro, S., Nakamura, K. (2009). An AP2-type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. Plant J., 60: 476-487. doi/10.1111/j.1365-313X.2009.03967.x [27] Magnani, E., Sjolander, K., Hake, S. (2004). From endonucleases to transcription factors: evolution of the AP2 DNA binding domain in plants. Plant Cell, 16(9), 2265-2277, https://doi.org/10.1105/tpc.104.023135 [28] Li, N., Xu, C. C., Li-Beisson, Y. H., Philippar, K. (2016). Fatty acid and lipid transport in plant cells. Trends Plant Sci., 21(2), 145-158, https://doi.org/10.1016/j.tplants.2015.10.011 [29] Li-Beisson, Y., Shorrosh, B., Beisson, F., Andersson, M. X., Arondel, V., Bates, P. D., Baud, S., Bird, D., Debono, A., Durrett, T. P., Franke, R. B., Graham, I. A., Katayama, K., Kelly, A. A., Larson, T., Markham, J. E., Miquel, M., Molina I., Nishida, I., Rowland, O., Samuels, L., Schmid, K. M., Wada, H., Welti, R., Xu, C., Zallot, R., Ohlrogge, J. (2013). Acyl-lipid metabolism. Arabidopsis Book. 11:e0161. Epub 2013 Jan 29. PMID: 23505340; PMCID: PMC3563272, https://doi.org/ 10.1199/tab.0161. [30] Marchler-Bauer, A., Derbyshire, M. K., Gonzales, N. R., Lu, S., Chitsaz, F., Geer, L. Y., Geer, R. C., He, J., Gwadz, M., Hurwitz, D. I., Lanczycki, C. J., Lu, F., Marchler, G. H., Song, J. S., Thanki, N., Wang, Z., Yamashita, R. A., Zhang, D., Zheng, C., Bryant, S. H. (2015). CDD: NCBI's conserved domain database. Nucleic Acids Res., 43, D222-D226, https://doi.org/10.1093/nar/gku1221 [31] Mu, J., Tan, H., Zheng, Q., Fu, F., Liang, Y., Zhang, J., Yang, X., Wang, T., Chong, K., Wang, X., Zuo, J. (2008). LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis. Plant Physiol., 148(2), 1042-1054, https://doi.org/10.1104/pp.108.126342 [32] Ogunniyi, D. S. (2006). Castor oil: a vital industrial raw material. Bioresour. Technol., 97(9), 1086-1091, https://doi.org/10.1016/j.biortech.2005.03.028 [33] Ohlrogge, J. B., Chapman, K. D. (2011). The seeds of green energy: expanding the contribution of plant oils as biofuels. Biochemist33, 34-38, https://doi.org/10.1042/BIO03302034 [34] Ohlrogge, J.B., Jaworski, J. G. (1997). Regulation of fatty acid synthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 109-136. doi.org/10.1146/annurev.arplant.48.1.109 [35] O'Malley, R. C., Huang, S. C., Song, L., Lewsey, M. G., Bartlett, A., Nery, J. R., Galli, M., Gallavotti, A., Ecker, J. R. (2016). Cistrome and epicistrome features shape the regulatory DNA landscape. Cell, 166(6), 1598, https://doi.org/10.1016/j.cell.2016.08.063 [36] Pouvreau, B., Baud, S., Vernoud, V., Morin, V., Py, C., Gendrot, G., Pichon, J. P., Rouster, J., Paul, W., Rogowsky, P. M. (2011). Duplicate maize Wrinkled 1 transcription factors activate target genes involved in seed oil biosynthesis. Plant Physiol., 156(2), 674-686, https://doi.org/10.1104/pp.111.173641 [37] Riechmann, J. L., Meyerowitz, E. M. (1998). The AP2/EREBP family of plant transcription factors. Biol. Chem., 379(6), 633-646, https://doi.org/10.1515/bchm.1998.379.6.633 [38] Scholz, V., da Silva, J. N. (2008). Prospects and Risks of the Use of castor Oil as a Fuel Biomass Bioenergy, 32, 95-100. doi.org/10.1016/j.biombioe.2007.08.004 [39] Shen, B., Allen, W. B., Zheng, P., Li, C., Glassman, K., Ranch, J., Nubel, D., Tarczynski, M. C. (2010). Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize. Plant Physiol., 153(3), 980-987, https://doi.org/10.1104/pp.110.157537 [40] Slocombe, S. P., Cornah, J., Pinfield-Wells, H., Soady, K., Zhang, Q. Y., Gilday, A., Dyer, J. M., Graham, I. A. (2009). Oil accumulation in leaves directed by modification of fatty acid breakdown and lipid synthesis pathways. Plant Biotechnol. J, 7(7), 694-703, https://doi.org/10.1111/j.1467-7652.2009.00435.x [41] Smith, M. A., Moon, H., Chowrira, G., Kunst, L. (2003). Heterologous expression of a fatty acid hydroxylase gene in developing seeds of Arabidopsis thaliana. Planta, 217(3), 507-516, https://doi.org/10.1007/s00425-003-1015-6 [42] Tajima, D., Kaneko, A., Sakamoto, M., Ito, Y., Hue, N., Miyazaki, M., Ishibashi, Y., Yuasa, T., Iwaya-Inoue, M. (2013). "Wrinkled 1 (WRI1) homologs, AP2-type transcription factors involving master regulation of seed storage oil synthesis in Castor bean (Ricinus communis L.),"Am. J. Plant Sci., 4 (2), pp. 333-339, https://doi.org/ 10.4236/ajps.2013.42044. [43] To A., Joubes, J., Barthole, G., Lecureuil, A., Scagnelli, A., Jasinski, S., Lepiniec, L., Baud, S. (2012). WRINKLED transcription factors orchestrate tissue-specific regulation of fatty acid biosynthesis in Arabidopsis. Plant Cell, 24(12), 5007-5023, https://doi.org/10.1105/tpc.112.106120 [44] Wang, X. D., Long, Y., Yin, Y. T., Zhang, C. Y., Gan, L., Liu, L. Z., Yu, L. J., Meng, J. L., Li, M. T. (2015). New insights into the genetic networks affecting seed fatty acid concentrations in Brassica napus. BMC Plant Biol., 15, 91, https://doi.org/10.1186/s12870-015-0475-8 [45] Wang, F., Perry, S. E. (2013). Identification of direct targets of FUSCA3, a key regulator of Arabidopsis seed development. Plant Physiol., 161(3), 1251-1264, https://doi.org/10.1104/pp.112.212282 [46] Wang, W., Ao, T., Zhang, Y., Wu, D., Xu, W., Han, B., Liu, A.(2022). Genome-wide analysis of the B3 transcription factors reveals that RcABI3/VP1 subfamily plays important roles in seed development and oil storage in castor bean (Ricinus communis L.). Plant Divers, 44(2), 201-212, https://doi.org/10.1016/j.pld.2021.06.008 [47] Vanhercke, T., Dyer, J. M., Mullen, R. T., Kilaru, A., Rahman, M. M., Petrie, J. R., Green, A. G., Yurchenko, O., Singh, S. P. (2019). Metabolic engineering for enhanced oil in biomass. Prog. Lipid Res. 74, 103-129, https://doi.org/ 10.1016/j.plipres.2019.02.002 [48] Wang, L., Du, X. L., Feng, Y. Z., Liu, P. F., Zhu, J. L., Zhang, L., Du, H. Y., Ma, M., Li, F. D. (2018). Ectopic expression of EuWRI1, encoding a transcription factor in E. ulmoides, changes the seeds oil content in transgenic tobacco. Biotechnol. Prog., 34(2), 337-346, https://doi.org/10.1002/btpr.2606 [49] Wang, H. Y., Guo, J. H., Lambert, K. N., Lin, Y. (2007). Developmental control of Arabidopsis seed oil biosynthesis. Planta, 226(3), 773-783, https://doi.org/10.1007/s00425-007-0524-0 [50] Weselake, R. J., Taylor, D. C., Rahman, M. H., Shah, S., Laroche, A., McVetty, P. B. E., Harwood, J. L. (2009). Increasing the flow of carbon into seed oil. Biotechnol. Adv., 27(6), 866-878, https://doi.org/10.1016/j.biotechadv.2009.07.001 [51] Wessler, S. R. (2005). Homing into the origin of the AP2 DNA binding domain. Trends Plant Sci., 10(2), 54-56, https://doi.org/10.1016/j.tplants.2004.12.007 [52] Wu, X. L., Liu, Z. H., Hu, Z. H., Huang, R. Z. (2014). BnWRI1 coordinates fatty acid biosynthesis and photosynthesis pathways during oil accumulation in rapeseed. J. Integr. Plant Biol., 56(6), 582-593, https://doi.org/10.1111/jipb.12158 [53] Xu, W., Li, F., Ling, L., Liu, A. (2013). Genome-wide survey and expression profiles of the AP2/ERF family in castor bean (Ricinus communis L.). BMC Genom., 14, 785, https://doi.org/10.1186/1471-2164-14-785 [54] Yang, Z., Liu, X., Li, N., Du, C., Wang, K., Zhao, C., Wang, Z., Hu, Y., Zhang, M. (2019). WRINKLED1 homologs highly and functionally express in oil-rich endosperms of oat and castor. Plant Sci. 287, https://doi.org/ 10.1016/j.plantsci.2019.110193 [55] Zhang, Y., Mulpuri, S., Liu A.(2016). High light exposure on seed coat increases lipid accumulation in seeds of castor bean (Ricinus communis L.), a nongreen oilseed crop. Photosynth. Res., 128(2), 125-140, https://doi.org/10.1007/s11120-015-0206-x |