[1] Ågren, J., Schemske, D.W., 2012. Reciprocal transplants demonstrate strong adaptive differentiation of the model organism Arabidopsis thaliana in its native range. New Phytol. 194, 1112-1122. https://doi.org/10.1111/j.1469-8137.2012.04112.x. [2] Aranda, S.C., Gradstein, S.R., Patino, J., et al., 2014. Phylogeny, classification and species delimitation in the liverwort genus Odontoschisma (Cephaloziaceae). Taxon 63, 1008-1025. https://doi.org/10.12705/635.12. [3] Chang, Y.T., Huang, C.C., 1988. Note on Fagaceae (Ⅱ). Acta Phytotax. Sin. 26, 111-119 (in Chinese with English abstract). http://www.plantsystematics.com/CN/Y1988/V26/I2/111. [4] Cheng, J., Li, M., Yuan, T., et al., 2021. A dataset on wild Rhododendron and geographical distribution information in China. Biodivers. Sci. 29, 1175-1180 (in Chinese with English abstract). http://doi.org/10.24899/do.202109001. [5] Cheng, W.C., 1935. New ligneous plants from China. Contr. Biol. Lab. Sci. Soc. China 10, 70-71. [6] Darriba, D., Taboada, G.L., Doallo, R., et al., 2012. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772. https://doi.org/10.1038/nmeth.2109. [7] Denk, T., 2003. Phylogeny of Fagus L. (Fagaceae) based on morphological data. Plant Syst. Evol. 240, 55-81. https://doi.org/10.1007/s00606-003-0018-x. [8] Diels, L., 1900. Die Flora von Central-China. Bot. Jahrb. 29, 285-287. [9] Ding, X., Xiao, J.H., Li, L., et al., 2019. Congruent species delimitation of two controversial gold-thread nanmu tree species based on morphological and restriction site-associated DNA sequencing data. J. Syst. Evol. 57, 234-246. https://doi.org/10.1111/jse.12433. [10] Fang, J.Y., Guo, Q.H., Liu, G.H., 1999. Distribution patterns of Chinese beech (Fagus L.) species in relation to topography. J. Integr. Plant Biol. 41, 766-774. (in Chinese with English abstract). https://www.jipb.net/EN/Y1999/V41/I7/. [11] Feng, X.Y., Wang, X.H., Chiang, Y.C., et al., 2021. Species delimitation with distinct methods based on molecular data to elucidate species boundaries in the Cycas taiwaniana complex (Cycadaceae). Taxon 70, 477-491. https://doi.org/10.1002/tax.12457. [12] Frankham, R., 2010. Challenges and opportunities of genetic approaches to biological conservation. Biol. Conserv. 143, 1919-1927. https://doi.org/10.1016/j.biocon.2010.05.011. [13] Gao, J., Liu, Z.L., Zhao, W., et al., 2020. Combined genotype and phenotype analyses reveal patterns of genomic adaptation to local environments in the subtropical oak Quercus acutissima. J. Syst. Evol. 59, 541-556. https://doi.org/10.5061/dryad.q2bvq83fv. [14] Garner, B.A., Hand, B.K., Amish, S.J., et al., 2016. Genomics in conservation: Case studies and bridging the gap between data and application. Trends Ecol. Evol. 31, 81-83. https://doi.org/10.1016/j.tree.2015.10.009. [15] Garnett, S.T., Christidis, L., 2017. Taxonomy anarchy hampers conservation. Nature 546, 25-27. https://doi.org/10.1038/546025a. [16] Gibson, K.J., Streich, M.K., Topping, T.S., et al., 2019. Utility of citizen science data: A case study in land-based shark fishing. PLoS One 14, e0226782. https://doi.org/10.1371/journal.pone.0226782. [17] Guo, K., Werger, M.J.A., 2010. Effect of prevailing monsoons on the distribution of beeches in continental East Asia. For. Ecol. Manag. 259, 2197-2203. https://doi.org/10.1016/j.foreco.2009.11.034. [18] Hampe, A., Bairlein, F., 2000. Modified dispersal-related traits in disjunct populations of bird-dispersed Frangula alnus (Rhamnaceae): a result of its Quaternary distribution shifts? Ecography 23, 603-613. https://doi.org/10.1111/j.1600-0587.2000.tb00179.x. [19] Hampe, A., Petit, R.J., 2005. Conserving biodiversity under climate change: the rear edge matters. Ecol. Lett. 8, 461-467. https://doi.org/10.1111/j.1461-0248.2005.00739.x. [20] Hayatae, B., 1911. Materials for a Flora of Formosa. J. Coll. Sci. Univ. Tokyo 30, 286-287. https://doi.org/10.5962/bhl.title.10783. [21] Heywood, V.H., 2017. The future of plant conservation and the role of botanic gardens. Plant Divers. 39, 309-313. https://doi.org/10.1016/j.pld.2017.12.002. [22] Huang, C.C., Zhang, Y.T., Bartholomew, B., 1999. Fagaceae. In: Wu Z.Y., Raven P.H., Hong D.Y. (eds.) Flora of China, vol. 4, Cycadaceae through Fagaceae. Science Press, Beijing; Missouri Botanical Garden Press, St. Louis, pp. 314-315. [23] International Union for Conservation of Nature and Natural Resources (IUCN), 2022. The IUCN Red List of Threatened Species. Version 15.1. [24] Jiang, L., Bao, Q., He, W., et al., 2022. Phylogeny and biogeography of Fagus (Fagaceae) based on 28 nuclear single/low-copy loci. J. Syst. Evol. 60, 759-772. https://doi.org/10.1016/j.pld.2017.12.002. [25] Kang, N. and Tang, Z.X., 1995. Studies on the taxonomy of the genus Torreya. Bull. Bot. Res. 15, 349-362. (in Chinese with English abstract). http://bbr.nefu.edu.cn/EN/Y1995/V15/I3/349. [26] Kou, Y.X., Xiao, K., Lai, X.R., et al., 2017. Natural hybridization between Torreya jackii and T. grandis (Taxaceae) in southeast China. J. Syst. Evol. 55, 25-33. https://doi.org/10.1111/jse.12217. [27] Li, Y.J., Zhang, Y.Y., Liao, P.C., et al., 2021. Genetic, geographic, and climatic factors jointly shape leaf morphology of an alpine oak, Quercus aquifolioides Rehder & E.H. Wilson. Ann. For. Sci. 78, 64. https://doi.org/10.1007/s13595-021-01077-w. [28] Li, Y.X., 2016. Rare and endangred Fagus chienii reappears in forests. Green Tianfu 9, 17 (in Chinese). [29] Liang, Y., Yang, X.X., Zhang, X.Y., et al., 2022. Species delimitation and distribution of Fagus in China based on genomic sequence variation. Sci. Sin. Vitae 52, 1292–1300, https://doi.org/10.1360/SSV-2022-0137. [30] Lortie, C., Hierro, J.L., 2021. A synthesis of local adaptation to climate through reciprocal common gardens. J. Ecol. 110, 1015-1021. https://doi.org/10.1111/1365-2745.13664. [31] Martinez Arbizu, P., 2020. PairwiseAdonis: pairwise multilevel comparison using adonis. R package version 0.4. [32] Meikle, R.D., 1957. What is the subspecies? Taxon 6, 102-105. https://doi.org/10.2307/1217753. [33] Nic Lughadha, E.M., Graziele Staggemeier, V., Vasconcelos, T.N.C., et al., 2019. Harnessing the potential of integrated systematics for conservation of taxonomically complex, megadiverse plant groups. Conserv. Biol. 33, 511-522. https://doi.org/10.1111/cobi.13289. [34] Ogilvie, M., Bouckaert R.R., Drummond A.J., 2017. StarBEAST2 brings faster species tree inference and accurate estimates of subsitiution rates. Mol. Biol. Evol. 34, 2101-2114. https://doi.org/10.1093/molbev/msx126. [35] Oksanen, J., Blanchet, F.G., Kindt, R., et al., 2015. Vegan: community ecology package. R Package Version 2.2-1. [36] Peters, R., 1997. Beech Forests. Geobotany. Kluwer Academic Publishers, Dordrecht, pp. 30-36. [37] Rawat, U.S. and Agarwal, N.K., 2015. Biodiversity: Concept, threats and conservation. Environ. Conserv. J. 16, 19-28. https://doi.org/10.36953/ECJ.2015.16303. [38] RCoreTeam, 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. [39] Rehder, A. and Wilson, E.H., 1916. Fagaceae. In: Sargent C.S. (Ed.) Plantae Wilsonianae: an enumeration of the woody plants collected in western China for the Arnold arboretum of Harvard university during the years 1907, 1908, and 1910, vol. 3. The University press, Cambridge, pp. 191-192. https://doi.org/10.5962/bhl.title.191. [40] Ronquist, F., Teslenko, M., van der Mark, P., et al., 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539-542. https://doi.org/10.1093/sysbio/sys029. [41] Shen, C.F., 1992. A monograph of the genus Fagus Tourn. ex L. (Fagaceae). PhD dissertation, The City Univ. of New York, New York. [42] Solow, A., Smith, W., Burgman, M., et al., 2011. Uncertain sightings and the extinction of the ivory-billed woodpecker. Conserv. Biol. 26, 180-184. https://doi.org/10.1111/j.1523-1739.2011.01743.x. [43] Stamatakis, A., 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312-1313. https://doi.org/10.1093/bioinformatics/btu033. [44] Sun, H., Deng, T., Chen, Y.S., et al., 2017. Current research and development trends in floristic geography. Biodivers. Sci. 25, 111-122. (in Chinese with English abstract). https://www.biodiversity-science.net/CN/Y2017/V25/I2/111. [45] Thomson, S.A., Pyle, R.L., Ahyong, S.T., et al., 2018. Taxonomy based on science is necessary for global conservation. PLOS Biology 16, e2005075. https://doi.org/10.1371/journal.pbio.2005075. [46] von Seemen, O., 1897. 13 neue Arten Fagaceen aus dem Herbar des Koniglichen botanischen Museums zu Berlin. Bot. Jahrb. 23, 56. [47] Ying, L.X., Zhang, T.T., Chiu, C.A., et al., 2016. The phylogeography of Fagus hayatae (Fagaceae): genetic isolation among populations. Ecol. Evol. 6, 2805-2816. https://doi.org/10.1002/ece3.2042. [48] Zhang, X.J., Liu, X.F., Liu, D.T., et al., 2021. Genetic diversity and structure of Rhododendron meddianum, a plant species with extremely small populations. Plant Divers. 43, 472-479. https://doi.org/10.1016/j.pld.2021.05.005. [49] Zhang, Y.T., Huang, C.C., 1998. Flora Reipublicae Popularis Sinicae, vol. 22. Science Press, Beijing, pp. 3-8 (in Chinese). [50] Zhang, Z.Y., Wu, R., Wang, Q., et al., 2013. Comparative phylogeography of two sympatric beeches in subtropical China: Species-specific geographic mosaic of lineages. Ecol. Evol. 3, 4461-4472. https://doi.org/10.1002/ece3.829. |