Plant Diversity ›› 2023, Vol. 45 ›› Issue (05): 552-568.DOI: 10.1016/j.pld.2023.03.014
Lin Lina,b, Xiao-Long Jiangc, Kai-Qi Guoc,d, Amy Byrnee, Min Denga,b
收稿日期:
2022-10-17
修回日期:
2023-03-27
出版日期:
2023-09-25
发布日期:
2023-11-04
通讯作者:
Xiao-Long Jiang,E-mail:xiaolongjiang@csuft.edu.cn;Min Deng,E-mail:dengmin@ynu.edu.cn
基金资助:
Lin Lina,b, Xiao-Long Jiangc, Kai-Qi Guoc,d, Amy Byrnee, Min Denga,b
Received:
2022-10-17
Revised:
2023-03-27
Online:
2023-09-25
Published:
2023-11-04
Contact:
Xiao-Long Jiang,E-mail:xiaolongjiang@csuft.edu.cn;Min Deng,E-mail:dengmin@ynu.edu.cn
Supported by:
摘要: East Asian evergreen broadleaved forests (EBFLs) harbor high species richness, but these ecosystems are severely impacted by global climate change and deforestation. Conserving and managing EBLFs requires understanding dominant tree distribution dynamics. In this study, we used 29 species in Quercus section Cyclobalanopsis—a keystone lineage in East Asian EBLFs—as proxies to predict EBLF distribution dynamics using species distribution models (SDMs). We examined climatic niche overlap, similarity, and equivalency among seven biogeographical regions’ species using ‘ecospat’. We also estimated the effectiveness of protected areas in the predicted range to elucidate priority conservation regions. Our results showed that the climatic niches of most geographical groups differ. The western species under the Indian summer monsoon regime were mainly impacted by temperature factors, whereas precipitation impacted the eastern species under the East Asian summer monsoon regime. Our simulation predicted a northward range expansion of section Cyclobalanopsis between 2081 and 2100, except for the ranges of the three Himalayan species analyzed, which might shrink significantly. The greatest shift of highly suitable areas was predicted for the species in the South Pacific, with a centroid shift of over 300 km. Remarkably, only 7.56% of suitable habitat is currently inside protected areas, and the percentage is predicted to continue declining in the future. To better conserve Asian EBLFs, establishing nature reserves in their northern distribution ranges, and transplanting the populations with predicted decreasing numbers and degraded habitats to their future highly suitable areas, should be high-priority objectives.
Lin Lin, Xiao-Long Jiang, Kai-Qi Guo, Amy Byrne, Min Deng. Climate change impacts the distribution of Quercus section Cyclobalanopsis (Fagaceae), a keystone lineage in East Asian evergreen broadleaved forests[J]. Plant Diversity, 2023, 45(05): 552-568.
Lin Lin, Xiao-Long Jiang, Kai-Qi Guo, Amy Byrne, Min Deng. Climate change impacts the distribution of Quercus section Cyclobalanopsis (Fagaceae), a keystone lineage in East Asian evergreen broadleaved forests[J]. Plant Diversity, 2023, 45(05): 552-568.
[1] Aguirre-Gutierrez, J., Serna-Chavez, H.M., Villalobos-Arambula, A.R., et al., 2015. Similar but not equivalent: ecological niche comparison across closely-related Mexican white pines. Divers. Distrib. 21, 245-257. https://doi.org/10.1111/ddi.12268. [2] Allouche, O., Tsoar, A., Kadmon, R., 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223-1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x. [3] Amissah, L., Mohren, G.M.J., Bongers, F., et al., 2014. Rainfall and temperature affect tree species distribution in Ghana. J. Trop. Ecol. 30, 435-446. https://doi.org/10.1017/S026646741400025X. [4] Ammer, C., 2019. Diversity and forest productivity in a changing climate. New Phytol. 221, 50-66. https://doi.org/10.1111/nph.15263. [5] Anderegg, W.R.L., Wu, C., Acil, N., et al., 2022. A climate risk analysis of earth's forests in the 21st century. Science 377, 1099-1103. https://doi.org/10.1126/science.abp9723. [6] Ashton, P., Zhu, H., 2020. The tropical-subtropical evergreen forest transition in East Asia: an exploration. Plant Divers. 42, 255-280. https://doi.org/10.1016/j.pld.2020.04.001. [7] Barbet-Massin, M., Jiguet, F., Albert, C.H., et al., 2012. Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol. Evol. 3, 327-338. https://doi.org/10.1111/j.2041-210X.2011.00172.x. [8] Barlow, M.M., Johnson, C.N., McDowell, M.C., et al., 2021. Species distribution models for conservation: identifying translocation sites for eastern quolls under climate change. Global Ecol. Conserv. 29, e01735. https://doi.org/10.1016/j.gecco.2021.e01735. [9] Barron, E., Averyanova, A., Kvacek, Z., et al., 2017. The fossil history of Quercus. In: Gil-Pelegrin, E., Peguero-Pina, J.J., Sancho-Knapik, D. (Eds.), Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L. Springer, Cham, pp. 39-105. [10] Bhandari, M.S., Meena, R.K., Shankhwar, R., et al., 2020. Global warming scenario depicts enhanced spatial distribution of Quercus lanata in the western Himalayas. Int. J. Glob. Warm. 22, 255-271. https://doi.org/10.1504/IJGW.2020.110861. [11] Bonner, F.T., 1996. Responses to drying of recalcitrant seeds of Quercus nigra L. Ann. Bot. 78, 181-187. https://doi.org/10.1006/anbo.1996.0111. [12] Boria, R.A., Olson, L.E., Goodman, S.M., et al., 2014. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Modell. 275, 73-77. https://doi.org/10.1016/j.ecolmodel.2013.12.012. [13] Broennimann, O., Fitzpatrick, M.C., Pearman, P.B., et al., 2012. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481-497. https://doi.org/10.1111/j.1466-8238.2011.00698.x. [14] Bruijnzeel, L.A., Mulligan, M., Scatena, F.N., 2011. Hydrometeorology of tropical montane cloud forests: emerging patterns. Hydrol. Process. 25, 465-498. https://doi.org/10.1002/hyp.7974. [15] Cavender-Bares, J., Meireles, J.E., Couture, J.J., et al., 2016. Associations of leaf spectra with genetic and phylogenetic variation in oaks: prospects for remote detection of biodiversity. Remote Sens. 8, 221. https://doi.org/10.3390/rs8030221. [16] Cavender-Bares, J., Kothari, S., Meireles, J.E., et al., 2018. The role of diversification in community assembly of the oaks (Quercus L.) across the continental U.S. Am. J. Bot. 105, 565-586. https://doi.org/10.1002/ajb2.1049. [17] Chardon, N.I., Cornwell, W.K., Flint, L.E., et al., 2015. Topographic, latitudinal and climatic distribution of Pinus coulteri: geographic range limits are not at the edge of the climate envelope. Ecography 38, 590-601. https://doi.org/10.1111/ecog.00780. [18] Chen, C.A., Hsu, H.H., Liang, H.C., et al., 2022a. Future change in extreme precipitation in East Asian spring and Mei-yu seasons in two high-resolution AGCMs. Weather Clim. Extremes 35, 100408. https://doi.org/10.1016/j.wace.2022.100408. [19] Chen, S., Chen, R., Zeng, X., et al., 2022b. Genetic diversity, population structure, and conservation units of Castanopsis sclerophylla (Fagaceae). Forests 13, 1239. https://doi.org/10.3390/f13081239. [20] Chen, Y.S., Deng, T., Zhou, Z., et al., 2017. Is the East Asian flora ancient or not? Natl. Sci. Rev. 5, 920-932. http://doi.org/10.1093/nsr/nwx156. [21] Cheuk, M.L., Fischer, G.A., 2021. The impact of climate change on the distribution of Castanopsis (Fagaceae) species in south China and Indo-China region. Global Ecol. Conserv. 26, e01388. https://doi.org/10.1016/j.gecco.2020.e01388. [22] Connor, K.F., Sowa, S., 2003. Effects of desiccation on the physiology and biochemistry of Quercus alba acorns. Tree Physiol. 23, 1147-1152. https://doi.org/10.1093/treephys/23.16.1147. [23] Deb, J.C., Phinn, S., Butt, N., et al., 2018. Identifying risks for tropical Asia climate change impacts on tropical forests. J. Trop. For. Sci. 30, 182-194. https://doi.org/10.26525/jtfs2018.30.2.182194. [24] Deng, M., 2007. Anatomy, taxonomy, distribution & phylogeny of Quercus subg. Cyclobalanopsis (Oersted) Schneid. (Fagaceae) [Botany, Chinese Academy of Sciences]. Beijing. [25] Deng, M., Jiang, X.L., Hipp, A.L., et al., 2018. Phylogeny and biogeography of East Asian evergreen oaks (Quercus section Cyclobalanopsis; Fagaceae): Insights into the Cenozoic history of evergreen broad-leaved forests in subtropical Asia. Mol. Phylogenet. Evol. 119, 170-181. https://doi.org/10.1016/j.ympev.2017.11.003. [26] Denk, T., Grimm, G.W., Manos, P.S., et al., 2017. An updated infrageneric classification of the oaks: review of previous taxonomic schemes and synthesis of evolutionary patterns. In: Gil-Pelegrin, E., Peguero-Pina, J., Sancho-Knapik, D. (Eds.), Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L. Springer, Cham, pp. 13-38. [27] Di Cola, V., Broennimann, O., Petitpierre, B., et al., 2017. ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774-787. https://doi.org/10.1111/ecog.02671. [28] Dormann, C.F., Elith, J., Bacher, S., et al., 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27-46. https://doi.org/10.1111/j.1600-0587.2012.07348.x. [29] Elith, J., Leathwick, J.R., 2009. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677-697. https://doi.org/10.1146/annurev.ecolsys.110308.120159. [30] Estoque, R.C., Ooba, M., Avitabile, V., et al., 2019. The future of Southeast Asia’s forests. Nat. Commun. 10, 1829. https://doi.org/10.1038/s41467-019-09646-4. [31] Fan, D.M., Yue, J.P., Nie, Z.L., et al., 2013. Phylogeography of Sophora davidii (Leguminosae) across the ‘Tanaka-Kaiyong Line’, an important phytogeographic boundary in Southwest China. Mol. Ecol. 22, 4270-4288. https://doi.org/10.1111/mec.12388. [32] Fan, D.M., Lei, S.Q., Liang, H., et al., 2022a. More opportunities more species: Pleistocene differentiation and northward expansion of an evergreen broad-leaved tree species Machilus thunbergii (Lauraceae) in Southeast China. BMC Plant Biol. 22, 35. http://doi.org/10.1186/s12870-021-03420-9. [33] Fan, Z.F., Zhou, B.J., Ma, C.L., et al., 2022b. Impacts of climate change on species distribution patterns of Polyspora sweet in China. Ecol. Evol. 12, e9516. https://doi.org/10.1002/ece3.9516. [34] Fang, J.Y., Yoda, K., 1991. Climate and vegetation in China V. Effect of climatic factors on the upper limit of distribution of evergreen broadleaf forest. Ecol. Res. 6, 113-125. https://doi.org/10.1007/BF02353874. [35] Fang, J.Y., Song, Y.C., Liu, H.Y., et al., 2002. Vegetation-climate relationship and its application in the division of vegetation zone in China. Acta Bot. Sin. 44, 1105-1122. [36] FAO and UNEP. 2020. The State of the World’s Forests 2020. Forests, biodiversity and people. Rome, Italy. https://doi.org/10.4060/ca8642en. [37] Fensholt, R., Horion, S., Tagesson, T., et al., 2015. Assessment of vegetation trends in drylands from time series of earth observation data. In: Kuenzer, C., Dech, S., Wagner, W. (Eds.), Remote Sensing Time Series: Revealing Land Surface Dynamics. Springer International Publishing, Cham, p. 160. [38] Feulner, G., Rahmstorf, S., Levermann, A., et al., 2013. On the origin of the surface air temperature difference between the hemispheres in earth's present-day climate. J. Clim. 26, 7136-7150. https://doi.org/10.1175/JCLI-D-12-00636.1. [39] Fick, S.E., Hijmans, R.J., 2017. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302-4315. https://doi.org/10.1002/joc.5086. [40] Fielding, A.H., Bell, J.F., 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38-49. https://doi.org/10.1017/S0376892997000088. [41] Garcia, R.A., Cabeza, M., Rahbek, C., et al., 2014. Multiple dimensions of climate change and their implications for biodiversity. Science 344, 1247579. https://doi.org/10.1126/science.1247579. [42] GBIF. org. 2021. Quercus section Cyclobalanopsis occurrence data downloaded the global biodiversity information facility. Accessed on 2021/12/18. https://doi.org/10.15468/dl.kbdujb. [43] Ge, F., Peng, T., Fraedrich, K., et al., 2019. Assessment of trends and variability in surface air temperature on multiple high-resolution datasets over the Indochina Peninsula. Theor. Appl. Climatol. 135, 1609-1627. http://doi.org/10.1007/s00704-018-2457-x. [44] Glennon, K.L., Ritchie, M.E., Segraves, K.A., 2014. Evidence for shared broad-scale climatic niches of diploid and polyploid plants. Ecol. Lett. 17, 574-582. https://doi.org/10.1111/ele.12259. [45] Global Forest Watch. 2022. University of Maryland and World Resources Institute. Accessed on 2022/6/5. www.globalforestwatch.org. [46] Gomez, J.M., 2003. Spatial patterns in long-distance dispersal of Quercus ilex acorns by jays in a heterogeneous landscape. Ecography 26, 573-584. http://doi.org/10.1034/j.1600-0587.2003.03586.x. [47] Gomez, J.M., Puerta-Pinero, C., Schupp, E.W., 2008. Effectiveness of rodents as local seed dispersers of Holm oaks. Oecologia 155, 529-537. http://doi.org/10.1007/s00442-007-0928-3. [48] Gormley, A.M., Forsyth, D.M., Griffioen, P., et al., 2011. Using presence-only and presence-absence data to estimate the current and potential distributions of established invasive species. J. Appl. Ecol. 48, 25-34. https://doi.org/10.1111/j.1365-2664.2010.01911.x. [49] Graham, M.H., 2003. Confronting multicollinearity in ecological multiple regression. Ecology 84, 2809-2815. https://doi.org/10.1890/02-3114. [50] Guo, K.Q., Jiang, X.L., Xu, G.B., 2021. Potential suitable area of Quercus lamellosa and the influence of climate change on its distribution. Chin. J. Ecol. 1-20. https://doi.org/10.13292/j.1000-4890.202108.023. [51] Hamann, A., Wang, T., 2006. Potential effects of climate change on ecosystem and tree species distribution in British Columbia. Ecology 87, 2773-2786. https://doi.org/10.1890/0012-9658(2006)87[2773:PEOCCO]2.0.CO;2. [52] Hansen, M.C., Potapov, P.V., Moore, R., et al., 2013. High-resolution global maps of 21st-century forest cover change. Science 342, 850-853. https://doi.org/10.1126/science.1244693. [53] Harrison, S.P., Yu, G., Takahara, H., et al., 2001. Diversity of temperate plants in east Asia. Nature 413, 129-130. https://doi.org/10.1038/35093166. [54] Hijmans, R.J., Cameron, S.E., Parra, J.L., et al., 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965-1978. https://doi.org/10.1002/joc.1276. [55] Hijmans, R.J., Phillips, S., Leathwick, J., et al., 2017. Package ‘dismo’. Circles 9, 1-68. [56] Huang, C.C., Chang, Y.T., Bartholomew, B., 1999. Fagaceae. In: Wu, C.Y., Raven, P.H. (Eds.), Flora of China (volume 4). Science Press and Missouri Botanical Garden Press, Beijing and St. Louis, pp. 380-400. [57] Huang, J.J., Wang, X.H., Yan, E.R., 2007. Leaf nutrient concentration, nutrient resorption and litter decomposition in an evergreen broad-leaved forest in eastern China. For. Ecol. Manage. 239, 150-158. https://doi.org/10.1016/j.foreco.2006.11.019. [58] Huang, K., Xia, J.Y., 2019. High ecosystem stability of evergreen broadleaf forests under severe droughts. Glob. Change Biol. 25, 3494-3503. https://doi.org/10.1111/gcb.14748. [59] Huang, Y., Zeng, Y., Jiang, P., et al., 2022. Prediction of potential geographic distribution of endangered relict tree species Dipteronia sinensis in China Based on MaxEnt and GIS. Pol. J. Environ. Stud. 31, 3597-3609. http://doi.org/10.15244/pjoes/146936. [60] Hughes, A.C., 2017. Understanding the drivers of Southeast Asian biodiversity loss. Ecosphere 8, e01624. https://doi.org/10.1002/ecs2.1624. [61] Hulme, M., Zhao, Z.C., Jiang, T., 1994. Recent and future climate change in east Asia. Int. J. Climatol. 14, 637-658. https://doi.org/10.1002/joc.3370140604. [62] Iverson, L.R., McKenzie, D., 2013. Tree-species range shifts in a changing climate: detecting, modeling, assisting. Landsc. Ecol. 28, 879-889. http://doi.org/10.1007/s10980-013-9885-x. [63] Jiang, X.L., Deng, M., Li, Y., 2016. Evolutionary history of subtropical evergreen broad-leaved forest in Yunnan Plateau and adjacent areas: an insight from Quercus schottkyana (Fagaceae). Tree Genet. Genomes. 12, 104. https://doi.org/10.1007/s11295-016-1063-2. [64] Jiang, X.L., An, M., Zheng, S.S., et al., 2018. Geographical isolation and environmental heterogeneity contribute to the spatial genetic patterns of Quercus kerrii (Fagaceae). Heredity 120, 219-233. https://doi.org/10.1038/s41437-017-0012-7. [65] Jiang, X.L., Gardner, E.M., Meng, H.H., et al., 2019. Land bridges in the Pleistocene contributed to flora assembly on the continental islands of South China: insights from the evolutionary history of Quercus championii. Mol. Phylogenet. Evol. 132, 36-45. https://doi.org/10.1016/j.ympev.2018.11.021. [66] Jiang, X.L., Su, Z.H., Xu, G.B., et al., 2021. Genomic signals reveal past evolutionary dynamics of Quercus schottkyana and its response to future climate change. J. Syst. Evol. 59, 985-997. https://doi.org/10.1111/jse.12703. [67] Jimenez-Valverde, A., Lobo, J.M., 2007. Threshold criteria for conversion of probability of species presence to either-or presence-absence. Acta Oecol. 31, 361-369. https://doi.org/10.1016/j.actao.2007.02.001. [68] Joet, T., Ourcival, J.M., Dussert, S., 2013. Ecological significance of seed desiccation sensitivity in Quercus ilex. Ann. Bot. 111, 693-701. https://doi.org/10.1093/aob/mct025. [69] Krishnamurti, T., 2015. Indian monsoon. Encyclopedia Britannica. Accessed on 2022/8/22. https://www.britannica.com/science/Indian-monsoon. [70] Lachat, T., Buetler, R., 2009. Identifying conservation and restoration priorities for saproxylic and old-growth forest species: A case study in Switzerland. Environ. Manage. 44, 105-118. https://doi.org/10.1007/s00267-009-9281-0. [71] Li, S.F., Valdes, P.J., Farnsworth, A., et al., 2021. Orographic evolution of northern Tibet shaped vegetation and plant diversity in eastern Asia. Sci. Adv. 7, eabc7741. http://doi.org/10.1126/sciadv.abc7741. [72] Li, X.W., Li, J., 1992. On the validity of Tanaka Line & its significance viewed from the distribution of Eastern Asiatic genera in Yunnan. Acta Bot. Yunnan. 14, 1-3. [73] Li, X.W., Li, J., 1997. The Tanaka-Kaiyong Line-an important floristic line for the study of the flora of East Asia. Ann. Mo. Bot. Gard. 84, 888-892. http://doi.org/10.2307/2992033. [74] Liao, Z.Y., Nobis, M.P., Xiong, Q.L., et al., 2021. Potential distributions of seven sympatric sclerophyllous oak species in Southwest China depend on climatic, non-climatic, and independent spatial drivers. Ann. For. Sci. 78.5. http://doi.org/10.1007/s13595-020-01012-5. [75] Lin, H.Y., Gu, K.J., Li, W.H., et al., 2021. Integrating coalescent-based species delimitation with ecological niche modeling delimited two species within the Stewartia sinensis complex (Theaceae). J. Syst. Evol. 60, 1037-1048. https://doi.org/10.1111/jse.12732. [76] Liu, J., Moller, M., Provan, J., et al., 2013. Geological and ecological factors drive cryptic speciation of yews in a biodiversity hotspot. New Phytol. 199, 1093-1108. https://doi.org/10.1111/nph.12336. [77] Lu, Y., Ranjitkar, S., Xu, J.C., et al., 2016. Propagation of native tree species to restore subtropical evergreen broad-leaved forests in SW China. Forests 7, 12. https://doi.org/10.3390/f7010012. [78] Luo, Y., Zhou, Z.K., 2001. Phytogeography of Quercus subg. Cyclobalanopsis. Acta Bot. Yunnan. 23, 1-16. [79] Manchester, S.R., 1994. Fruits and Seeds of the Middle Eocene Nut Beds Flora, Clarno Formation, Oregon. Paleontological Research Institution. [80] Manel, S., Williams, H.C., Ormerod, S.J., 2001. Evaluating presence-absence models in ecology: the need to account for prevalence. J. Appl. Ecol. 38, 921-931. https://doi.org/10.1046/j.1365-2664.2001.00647.x. [81] Miettinen, J., Shi, C.H., Liew, S.C., 2011. Deforestation rates in insular Southeast Asia between 2000 and 2010. Global Change Biol. 17, 2261-2270. https://doi.org/10.1111/j.1365-2486.2011.02398.x. [82] Naimi, B., Hamm, N.A.S., Groen, T.A., et al., 2014. Where is positional uncertainty a problem for species distribution modelling? Ecography 37, 191-203. https://doi.org/10.1111/j.1600-0587.2013.00205.x. [83] Naimi, B., Araujo, M.B., 2016. SDM: A reproducible and extensible R platform for species distribution modelling. Ecography 39, 368-375. https://doi.org/10.1111/ecog.01881. [84] Ni, J., Yu, G., Harrison, S.P., et al., 2010. Palaeovegetation in China during the late Quaternary: biome reconstructions based on a global scheme of plant functional types. Palaeogeogr. Palaeoclimatol. Palaeoecol. 289, 44-61. https://doi.org/10.1016/j.palaeo.2010.02.008. [85] O’Donnell, J., Gallagher, R.V., Wilson, P.D., et al., 2012. Invasion hotspots for non-native plants in Australia under current and future climates. Global Change Biol. 18, 617-629. https://doi.org/10.1111/j.1365-2486.2011.02537.x. [86] Oh, S.G., Park, J.H., Lee, S.H., et al., 2014. Assessment of the RegCM4 over East Asia and future precipitation change adapted to the RCP scenarios. J. Geophys. Res. Atmos. 119, 2913-2927. https://doi.org/10.1002/2013JD020693. [87] Olivieri, I., Tonnabel, J., Ronce, O., et al., 2016. Why evolution matters for species conservation: perspectives from three case studies of plant metapopulations. Evol. Appl. 9, 196-211. https://doi.org/10.1111/eva.12336. [88] Pachauri, R.K., Allen, M.R., Barros, V.R., et al., 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland. [89] Parding, K.M., Dobler, A., McSweeney, C.F., et al., 2020. GCMeval - An interactive tool for evaluation and selection of climate model ensembles. Clim. Serv. 18, 100167. https://doi.org/10.1016/j.cliser.2020.100167. [90] Parmesan, C., Ryrholm, N., Stefanescu, C., et al., 1999. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399, 579-583. https://doi.org/10.1038/21181. [91] Parmesan, C., Yohe, G., 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37-42. https://doi.org/10.1038/nature01286. [92] Pearce, J., Ferrier, S., 2000. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Modell. 133, 225-245. https://doi.org/10.1016/S0304-3800(00)00322-7. [93] Qian, H., Ricklefs, R.E., 2000. Large-scale processes and the Asian bias in species diversity of temperate plants. Nature 407, 180-182. https://doi.org/10.1038/35025052. [94] Qin, J., Ju, J.H., Xie, M.E., 1997. Weather and Climate in Low Latitudes Plateau. China Meteorology Press. [95] Qiu, Y.X., Lu, Q.X., Zhang, Y.H., et al., 2017. Phylogeography of East Asia’s Tertiary relict plants: current progress and future prospects. Biodiv. Sci. 25, 136-146. http://doi.org/10.17520/biods.2016292. [96] R Core Team, 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org. [97] Ramirez-Preciado, R.P., Gasca-Pineda, J., Arteaga, M.C., 2019. Effects of global warming on the potential distribution ranges of six Quercus species (Fagaceae). Flora 251, 32-38. https://doi.org/10.1016/j.flora.2018.12.006. [98] Ramos-Palacios, C.R., Badano, E.I., Flores, J., et al., 2014. Distribution patterns of acorns after primary dispersion in a fragmented oak forest and their consequences on predators and dispersers. Eur. J. For. Res. 133, 391-404. https://doi.org/10.1007/s10342-013-0771-5. [99] Rathore, P., Roy, A., Karnatak, H., 2019. Modelling the vulnerability of Taxus wallichiana to climate change scenarios in South East Asia. Ecol. Indic. 102, 199-207. https://doi.org/10.1016/j.ecolind.2019.02.020. [100] Razgour, O., Forester, B., Taggart John, B., et al., 2019. Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proc. Natl. Acad. Sci. U.S.A. 116, 10418-10423. https://doi.org/10.1073/pnas.1820663116. [101] Rodriguez-Sanchez, F., Arroyo, J., 2008. Reconstructing the demise of Tethyan plants: climate-driven range dynamics of Laurus since the Pliocene. Glob. Ecol. Biogeogr. 17, 685-695. https://doi.org/10.1111/j.1466-8238.2008.00410.x. [102] Sancho-Knapik, D., Escudero, A., Mediavilla, S., et al., 2021. Deciduous and evergreen oaks show contrasting adaptive responses in leaf mass per area across environments. New Phytol. 230, 521-534. https://doi.org/10.1111/nph.17151. [103] Savini, T., Namkhan, M., Sukumal, N., 2021. Conservation status of Southeast Asian natural habitat estimated using Galliformes spatio-temporal range decline. Global Ecol. Conserv. 29, e01723. https://doi.org/10.1016/j.gecco.2021.e01723. [104] Schoener, T.W., 1970. Nonsynchronous spatial overlap of Lizards in patchy habitats. Ecology 51, 408-418. https://doi.org/10.2307/1935376. [105] Scofield, D.G., Alfaro, V.R., Sork, V.L., et al., 2011. Foraging patterns of acorn woodpeckers (Melanerpes formicivorus) on valley oak (Quercus lobata Nee) in two California oak savanna-woodlands. Oecologia 166, 187-196. https://doi.org/10.1007/s00442-010-1828-5. [106] Segurado, P., Araujo, M.B., Kunin, W.E., 2006. Consequences of spatial autocorrelation for niche-based models. J. Appl. Ecol. 43, 433-444. https://doi.org/10.1111/j.1365-2664.2006.01162.x. [107] Serra-Diaz, J.M., Enquist, B.J., Maitner, B., et al., 2018. Big data of tree species distributions: how big and how good? For. Ecosyst. 4, 30. https://doi.org/10.1186/s40663-017-0120-0. [108] Shalisko, V., Vazquez-Garcia, J.A., Villalobos-Arambula, A.R., et al., 2018. Vulnerability to climate change for narrowly ranged species: the case of Ecuadorian endemic Magnolia mercedesiarum. bioRxiv 482000. https://doi.org/10.1101/482000. [109] Shi, M.M., Michalski, S.G., Welk, E., et al., 2014. Phylogeography of a widespread Asian subtropical tree: genetic east-west differentiation and climate envelope modelling suggest multiple glacial refugia. J. Biogeogr. 41, 1710-1720. https://doi.org/10.1111/jbi.12322. [110] Shi, X.D., Yin, Q., Sang, Z.Y., et al., 2021. Prediction of potentially suitable areas for the introduction of Magnolia wufengensis under climate change. Ecol. Indic. 127, 107762. https://doi.org/10.1016/j.ecolind.2021.107762. [111] Silva, J.L.S.e., Cruz-Neto, O., Peres, C.A., et al., 2019. Climate change will reduce suitable Caatinga dry forest habitat for endemic plants with disproportionate impacts on specialized reproductive strategies. PLoS One 14, e0217028. https://doi.org/10.1371/journal.pone.0217028. [112] Sodhi, N.S., Koh, L.P., Brook, B.W., et al., 2004. Southeast Asian biodiversity: an impending disaster. Trends Ecol. Evol. 19, 654-660. https://doi.org/10.1016/j.tree.2004.09.006. [113] Soepadmo, E., 1972. Fagaceae. In: Steenis, C.G.G.J.V. (Ed.), Flora Malesiana (volume 7). Noordhoff International Publishing, Leiden, pp. 265-403. [114] Song, Y.C., Da, L.J., 2016. Evergreen broad-leaved forest of East Asia. In: Box, E.O. (Ed.), Vegetation Structure and Function at Multiple Spatial, Temporal and Conceptual Scales. Springer, pp. 101-128. [115] Sun, S., Zhang, Y., Huang, D., et al., 2020. The effect of climate change on the richness distribution pattern of oaks (Quercus L.) in China. Sci. Total Environ. 744, 140786. https://doi.org/10.1016/j.scitotenv.2020.140786. [116] Sun, Y., Hu, H.Q., Huang, H.W., et al., 2014. Chloroplast diversity and population differentiation of Castanopsis fargesii (Fagaceae): a dominant tree species in evergreen broad-leaved forest of subtropical China. Tree Genet. Genomes 10, 1531-1539. https://doi.org/10.1007/s11295-014-0776-3. [117] Tang, C.Q., Matsui, T., Ohashi, H., et al., 2018. Identifying long-term stable refugia for relict plant species in East Asia. Nat. Commun. 9, 4488. http://doi.org/10.1038/s41467-018-06837-3. [118] Tang, C.Q., Ohashi, H., Matsui, T., et al., 2020. Effects of climate change on the potential distribution of the threatened relict Dipentodon sinicus of subtropical forests in East Asia: recommendations for management and conservation. Global Ecol. Conserv. 23.e01192. https://doi.org/10.1016/j.gecco.2020.e01192. [119] Tang, C.Q., Matsui, T., Ohashi, H., et al., 2022. Identifying long-term stable refugia for dominant Castanopsis species of evergreen broad-leaved forests in East Asia: a tool for ensuring their conservation. Biol. Conserv. 273, 109663. https://doi.org/10.1016/j.biocon.2022.109663. [120] Tang, J.F., Zhao, X.Z., 2022. Large variability in response to future climate and land-use changes among Chinese Theaceae species. Ecol. Evol. 12, e9480. https://doi.org/10.1002/ece3.9480. [121] Tian, B., Zhou, Z.L., Du, F.K., et al., 2015. The Tanaka Line shaped the phylogeographic pattern of the cotton tree (Bombax ceiba) in southwest China. Biochem. Syst. Ecol. 60, 150-157. https://doi.org/10.1016/j.bse.2015.04.014. [122] Tweddle, J.C., Dickie, J.B., Baskin, C.C., et al., 2003. Ecological aspects of seed desiccation sensitivity. J. Ecol. 91, 294-304. https://doi.org/10.1046/j.1365-2745.2003.00760.x. [123] UN Environment Programme, International Union for the Conservation of Nature. 2017. Protected planet: world database on protected areas. Accessed on 2021/4/15. www.protectedplanet.net. [124] Vaclavik, T., Meentemeyer, R.K., 2009. Invasive species distribution modeling (iSDM): are absence data and dispersal constraints needed to predict actual distributions? Ecol. Modell. 220, 3248-3258. https://doi.org/10.1016/j.ecolmodel.2009.08.013. [125] Valladares, F., Matesanz, S., Guilhaumon, F., et al., 2014. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351-1364. https://doi.org/10.1111/ele.12348. [126] Wang, A., Melton, A.E., Soltis, D.E., et al., 2022. Potential distributional shifts in North America of allelopathic invasive plant species under climate change models. Plant Divers. 44, 11-19. https://doi.org/10.1016/j.pld.2021.06.010. [127] Wang, X.H., Kent, M., Fang, X.F., 2007. Evergreen broad-leaved forest in Eastern China: its ecology and conservation and the importance of resprouting in forest restoration. For. Ecol. Manage. 245, 76-87. https://doi.org/10.1016/j.foreco.2007.03.043. [128] Warren, D.L., Glor, R.E., Turelli, M., 2008. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62, 2868-2883. https://doi.org/10.1111/j.1558-5646.2008.00482.x. [129] Weigelt, P., Jetz, W., Kreft, H., 2013. Bioclimatic and physical characterization of the world’s islands. Proc. Natl. Acad. Sci. U.S.A. 110, 15307-15312. https://doi.org/10.1073/pnas.1306309110. [130] Woodruff, D.S., 2010. Biogeography and conservation in Southeast Asia: how 2.7 million years of repeated environmental fluctuations affect today’s patterns and the future of the remaining refugial-phase biodiversity. Biodivers. Conserv. 19, 919-941. https://doi.org/10.1007/s10531-010-9783-3. [131] Wu, Z.Y., Sun, H., Zhou, Z.K., et al., 2010. Floristics of seed plants from China. Sciences Press, Beijing. [132] Wyler, L.S., Sheikh, P.A., 2008. International illegal trade in wildlife: threats and US policy. Library of Congress Washington DC Congressional Research Service. [133] Xu, J., Deng, M., Jiang, X.L., et al., 2015. Phylogeography of Quercus glauca (Fagaceae), a dominant tree of East Asian subtropical evergreen forests, based on three chloroplast DNA interspace sequences. Tree Genet. Genomes 11, 805. https://doi.org/10.1007/s11295-014-0805-2. [134] Xu, J., Song, Y.G., Deng, M., et al., 2020. Seed germination schedule and environmental context shaped the population genetic structure of subtropical evergreen oaks on the Yun-Gui Plateau, Southwest China. Heredity 124, 499-513. https://doi.org/10.1038/s41437-019-0283-2. [135] Xu, X., Zhang, H.Y., Xie, T., et al., 2017. Effects of climate change on the potentially suitable climatic geographical range of Liriodendron chinense. Forests 8, 399. http://doi.org/10.3390/f8100399. [136] Yan, M.X., Liu, R.B., Li, Y., et al., 2019. Ancient events and climate adaptive capacity shaped distinct chloroplast genetic structure in the oak lineages. BMC Evol. Biol. 19, 202. http://doi.org/10.1186/s12862-019-1523-z. [137] Yang, J.T., Jiang, X., Chen, H., et al., 2022. Predicting the potential distribution of the endangered plant Magnolia wilsonii using MaxEnt under climate change in China. Pol. J. Environ. Stud. 31, 4435-4445. http://doi.org/10.15244/pjoes/148187. [138] Ye, J.W., Li, D.Z., Hampe, A., 2019. Differential Quaternary dynamics of evergreen broadleaved forests in subtropical China revealed by phylogeography of Lindera aggregata (Lauraceae). J. Biogeogr. 46, 1112-1123. https://doi.org/10.1111/jbi.13547. [139] Ye, J.W., Li, D.Z., 2022. Diversification of East Asian subtropical evergreen broadleaved forests over the last 8 million years. Ecol. Evol. 12, e9451. https://doi.org/10.1002/ece3.9451. [140] Ye, X.Z., Zhao, G.H., Zhang, M.Z., et al., 2020. Distribution pattern of endangered plant Semiliquidambar cathayensis (Hamamelidaceae) in response to climate change after the last interglacial period. Forests 11, 434. http://doi.org/10.3390/f11040434. [141] Ying, T.S., 2001. Species diversity and distribution pattern of seed plants in China. Biodiv. Sci. 9, 393-398. http://doi.org/10.17520/biods.2001058. [142] Zhang, K.L., Zhang, Y., Jia, D.W., et al., 2020a. Species distribution modeling of Sassafras Tzumu and implications for forest management. Sustainability 12, 4132. https://doi.org/10.3390/su12104132. [143] Zhang, L.J., Li, H.Y., Ren, H., et al., 2020b. Prediction of the suitable distribution of Cyclobalanopsis glauca and its implications for the northern boundary of subtropical zone of China. Geogr. Res. 39, 990-1001. https://doi.org/10.11821/dlyj020190306. [144] Zhang, L.J., Zhu, L.Q., Li, Y.H., et al., 2022. Maxent modelling predicts a shift in suitable habitats of a subtropical evergreen tree (Cyclobalanopsis glauca (Thunberg) Oersted) under climate change scenarios in China. Forests 13, 126. https://doi.org/10.3390/f13010126. [145] Zhang, M.G., Zhou, Z.K., Chen, W.Y., et al., 2012. Using species distribution modeling to improve conservation and land use planning of Yunnan, China. Biol. Conserv. 153, 257-264. https://doi.org/10.1016/j.biocon.2012.04.023. |
[1] | Yazhou Zhang, Lishen Qian, Daniel Spalink, Lu Sun, Jianguo Chen, Hang Sun. Spatial phylogenetics of two topographic extremes of the Hengduan Mountains in southwestern China and its implications for biodiversity conservation[J]. Plant Diversity, 2021, 43(03): 181-191. |
[2] | Jie Qian, Huifu Zhuang, Weikang Yang, Yifeng Chen, Shilong Chen, Yanhua Qu, Yuanming Zhang, Yongping Yang, Yuhua Wang. Selecting flagship species to solve a biodiversity conservation conundrum[J]. Plant Diversity, 2020, 42(06): 488-491. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||