[1] Alirezalu, A., Ahmadi, N., Salehi, P., et al., 2020. Physicochemical characterization, antioxidant activity, and phenolic compounds of hawthorn (Crataegus spp.) fruits species for potential use in food applications. Foods. 9, 436. https://doi.org/10.3390/foods9040436. [2] Bachmann, M. and Keller, F., 1995. Metabolism of the raffinose family oligosaccharides in leaves of Ajuga reptans L. (Inter- and Intracellular Compartmentation). Plant Physiol. 109, 991-998. https://doi.org/10.1104/pp.109.3.991. [3] Barrett, D., Beaulieu, J. and Shewfelt, R., 2010. Color, flavor, texture, and nutritional quality of fresh-cut fruits and vegetables: desirable levels, instrumental and sensory measurement, and the effects of processing. Crit. Rev. Food Sci. Nutr. 50, 369-389. https://doi.org/10.1080/10408391003626322. [4] Beauchamp, G., 2016. Why do we like sweet taste: A bitter tale? Physiol. Behav. 164, 432-437. https://doi.org/10.1016/j.physbeh.2016.05.007. [5] Chen, Z., Jiang, J., Shu, L., et al., 2021. Combined transcriptomic and metabolic analyses reveal potential mechanism for fruit development and quality control of Chinese raspberry (Rubus chingii Hu). Plant Cell Rep. 40, 1923-1946. https://doi.org/10.1007/s00299-021-02758-6. [6] Commission, C.P., 2020. Pharmacopoeia of the People's Republic of China. Beijing: The medicine science and technology press of China. [7] Dong, N. and Lin, H., 2021. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. J. Integr. Plant Biol. 63, 180-209. https://doi.org/10.1111/jipb.13054. [8] Drewnowski, A., 2001. The science and complexity of bitter taste. Nutr. Rev. 59, 163-169. https://doi.org/10.1111/j.1753-4887.2001.tb07007.x. [9] Du, X., Zhang, X., Bu, H., et al., 2019. Molecular analysis of evolution and origins of cultivated hawthorn (Crataegus spp.) and related species in China. Front. Plant Sci. 10, 443. https://doi.org/10.3389/fpls.2019.00443. [10] El Hadi, M., Zhang, F., Wu, F., et al., 2013. Advances in fruit aroma volatile research. Molecules. 18, 8200-8229. https://doi.org/10.3390/molecules18078200. [11] Gil, L., Ben-Ari, J., Turgeon, R., et al., 2012. Effect of CMV infection and high temperatures on the enzymes involved in raffinose family oligosaccharide biosynthesis in melon plants. J. Plant Physiol. 169, 965-970. https://doi.org/10.1016/j.jplph.2012.02.019. [12] Gong, C., Diao, W., Zhu, H., et al., 2021. Metabolome and transcriptome integration reveals insights into flavor formation of 'Crimson' watermelon flesh during fruit development. Front. Plant Sci. 12, 629361. https://doi.org/10.3389/fpls.2021.629361. [13] Gu, C. and Spongberg, S.A., 2003. Crataegus Linnaeus. In: Wu ZY, Raven PH, and Hong DY, eds. Flora of China. 9 (Pittosporaceae through connaraceae), Beijing: Science Press, 111-117. [14] Gundogdu, M., Ozrenk, K., Ercisli, S., et al., 2014. Organic acids, sugars, vitamin C content and some pomological characteristics of eleven hawthorn species (Crataegus spp.) from Turkey. Biol. Res. 47, 21. https://doi.org/10.1186/0717-6287-47-21. [15] Hannah, M., Zuther, E., Buchel, K., et al., 2006. Transport and metabolism of raffinose family oligosaccharides in transgenic potato. J. Exp. Bot. 57, 3801-3811. https://doi.org/10.1093/jxb/erl152. [16] Harborne, J.B. and Williams, C.A., 2000. Advances in flavonoid research since 1992. Phytochemistry. 55, 481-504. https://doi.org/10.1016/S0031-9422(00)00235-1. [17] Hu, G., Wang, Y., Wang, Y., et al., 2021. New insight into the phylogeny and taxonomy of cultivated and related species of Crataegus in China, based on complete chloroplast genome sequencing. Horticulturae. 7, 301. https://doi.org/10.3390/horticulturae7090301. [18] Huerta-Cepas, J., Szklarczyk, D., Heller, D., et al., 2019. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309-D314. https://doi.org/10.1093/nar/gky1085. [19] Hui, W., Zhao, F., Wang, J., et al., 2020. De novo transcriptome assembly for the five major organs of Zanthoxylum armatum and the identification of genes involved in terpenoid compound and fatty acid metabolism. BMC Genomics. 21, 81. https://doi.org/10.1186/s12864-020-6521-4. [20] Igamberdiev, A. and Eprintsev, A., 2016. Organic acids: The pools of fixed carbon involved in redox regulation and energy balance in higher plants. Front. Plant Sci. 7, 1042. https://doi.org/10.3389/fpls.2016.01042. [21] Kannan, U., Sharma, R., Gangola, M., et al., 2021. Sequential expression of raffinose synthase and stachyose synthase corresponds to successive accumulation of raffinose, stachyose and verbascose in developing seeds of Lens culinaris Medik. J. Plant Physiol. 265, 153494. https://doi.org/10.1016/j.jplph.2021.153494. [22] Khan, J., Deb, P., Priya, S., et al., 2021. Dietary flavonoids: Cardioprotective potential with antioxidant effects and their pharmacokinetic, toxicological and therapeutic concerns. Molecules. 26, 4021. https://doi.org/10.3390/molecules26134021. [23] Kim, D., Paggi, J., Park, C., et al., 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907-915. https://doi.org/10.1038/s41587-019-0201-4. [24] Kiyama, R., 2017. Estrogenic terpenes and terpenoids: Pathways, functions and applications. Eur. J. Pharmacol. 405-415. https://doi.org/10.1016/j.ejphar.2017.09.049. [25] Lehle, L. and Tanner, W., 1973. The function of myo-inositol in the biosynthesis of raffinose. Purification and characterization of galactinol:sucrose 6-galactosyltransferase from Vicia faba seeds. Eur. J. Biochem. 38, 103-110. https://doi.org/10.1111/j.1432-1033.1973.tb03039.x. [26] Liu, S., Grierson, D. and Xi, W., 2022. Biosynthesis, distribution, nutritional and organoleptic properties of bitter compounds in fruit and vegetables. Crit Rev Food Sci Nutr. 1-20. https://doi.org/10.1080/10408398.2022.2119930. [27] Liu, W., Feng, Y., Yu, S., et al., 2021. The flavonoid biosynthesis network in plants. Int. J. Mol. Sci. 22, 12824. https://doi.org/10.3390/ijms222312824. [28] Love, M., Huber, W. and Anders, S., 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550. https://doi.org/10.1186/s13059-014-0550-8. [29] Lund, J., Brown, P. and Shipley, P., 2020. Quantification of north American and European Crataegus flavonoids by nuclear magnetic resonance spectrometry. Fitoterapia. 143, 104537. https://doi.org/10.1016/j.fitote.2020.104537. [30] Mierziak, J., Kostyn, K. and Kulma, A., 2014. Flavonoids as important molecules of plant interactions with the environment. Molecules. 19, 16240-16265. https://doi.org/10.3390/molecules191016240. [31] Nabavi, S., Samec, D., Tomczyk, M., et al., 2020. Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering. Biotechnol. Adv. 38, 107316. https://doi.org/10.1016/j.biotechadv.2018.11.005. [32] Oliveira, A., de Oliveira E Silva, A., Pereira, R., et al., 2022. Anti-obesity properties and mechanism of action of flavonoids: A review. Crit. Rev. Food Sci. Nutr. 62, 7827-7848. https://doi.org/10.1080/10408398.2021.1919051. [33] Orhan, I., 2018. Phytochemical and pharmacological activity profile of Crataegus oxyacantha L. (hawthorn) - A cardiotonic herb. Curr. Med. Chem. 25, 4854-4865. https://doi.org/10.2174/0929867323666160919095519. [34] Patrick, J., Botha, F. and Birch, R., 2013. Metabolic engineering of sugars and simple sugar derivatives in plants. Plant Biotechnol. J. 11, 142-156. https://doi.org/10.1111/pbi.12002. [35] Peng, L., Gao, W., Song, M., et al., 2022. Integrated metabolome and transcriptome analysis of fruit flavor and carotenoids biosynthesis differences between Mature-Green and Tree-Ripe of cv. “Golden Phoenix” mangoes (Mangifera indica L.). Front. Plant Sci. 13, 816492. https://doi.org/10.3389/fpls.2022.816492. [36] Peterbauer, T., Mucha, J., Mayer, U., et al., 1999. Stachyose synthesis in seeds of adzuki bean (Vigna angularis): molecular cloning and functional expression of stachyose synthase. Plant J. 20, 509-518. https://doi.org/10.1046/j.1365-313x.1999.00618.x. [37] Peterbauer, T. and Richter, A., 1998. Galactosylononitol and stachyose synthesis in seeds of adzuki bean. Purification and characterization of stachyose synthase. Plant Physiol. 117, 165-172. https://doi.org/10.1104/pp.117.1.165. [38] Phipps, J.B., Robertson, K.R., Smith, P.G., et al., 1990. A checklist of the subfamily Maloideae (Rosaceae). Can. J. Bot. 68, 2209-2269. https://doi.org/10.1139/b90-288. [39] Pichersky, E. and Raguso, R., 2018. Why do plants produce so many terpenoid compounds? New Phytol. 220, 692-702. https://doi.org/10.1111/nph.14178. [40] Pollock, C.J., Lloyd, E.J., Stoddart, J.L., et al., 2010. Growth, photosynthesis and assimilate partitioning in Lolium temulentum exposed to chilling temperatures. Physiol Plant. 59, 257-262. https://doi.org/10.1111/j.1399-3054.1983.tb00768.x. [41] Robyt, J. and Ackerman, R., 1971. Isolation, purification, and characterization of a maltotetraose-producing amylase from Pseudomonas stutzeri. Arch. Biochem. Biophys. 145, 105-114. https://doi.org/10.1016/0003-9861(71)90015-4. [42] Routaboul, J., Kerhoas, L., Debeaujon, I., et al., 2006. Flavonoid diversity and biosynthesis in seed of Arabidopsis thaliana. Planta. 224, 96-107. https://doi.org/10.1007/s00425-005-0197-5. [43] Sengupta, S., Mukherjee, S., Basak, P., et al., 2015. Significance of galactinol and raffinose family oligosaccharide synthesis in plants. Front. Plant Sci. 6, 656. https://doi.org/10.3389/fpls.2015.00656. [44] Terol, J., Soler, G., Talon, M., et al., 2010. The aconitate hydratase family from Citrus. BMC Plant Biol. 10, 222. https://doi.org/10.1186/1471-2229-10-222. [45] Treutter, D., 2006. Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biol. 7, 581-591. https://doi.org/10.1055/s-2005-873009. [46] Wang, L., Wang, S. and Li, W., 2012. RSeQC: Quality control of RNA-seq experiments. Bioinformatics. 28, 2184-2185. https://doi.org/10.1093/bioinformatics/bts356. [47] Wang, R., Shu, P., Zhang, C., et al., 2022. Integrative analyses of metabolome and genome-wide transcriptome reveal the regulatory network governing flavor formation in kiwifruit (Actinidia chinensis). New Phytol. 233, 373-389. https://doi.org/10.1111/nph.17618. [48] Wu, Y., Zhang, C., Huang, Z., et al., 2022. Integrative analysis of the metabolome and transcriptome provides insights into the mechanisms of flavonoid biosynthesis in blackberry. Food Res. Int. 153, 110948. https://doi.org/10.1016/j.foodres.2022.110948. [49] Xu, Y., Zhu, C., Xu, C., et al., 2019. Integration of metabolite profiling and transcriptome analysis reveals genes related to volatile terpenoid metabolism in finger citron (C. medica var. sarcodactylis). Molecules. 24, 2564. https://doi.org/10.3390/molecules24142564. [50] Zhang, J., Chai, X., Zhao, F., et al., 2022. Food applications and potential health benefits of hawthorn. Foods. 11, 2861. https://doi.org/10.3390/foods11182861. [51] Zhang, T., Qiao, Q., Du, X., et al., 2022. Cultivated hawthorn (Crataegus pinnatifida var. major) genome sheds light on the evolution of Maleae (apple tribe). J. Integr. Plant Biol. 64, 1487-1501. https://doi.org/10.1111/jipb.13318. [52] Zhang, T., Sun, M., Guo, Y., et al., 2018. Overexpression of LiDXS and LiDXR from lily (Lilium ‘Siberia’) enhances the terpenoid content in tobacco flowers. Front. Plant Sci. 9, 909. https://doi.org/10.3389/fpls.2018.00909. [53] Zhang, X., Wang, J., Li, P., et al., 2023. Integrative metabolome and transcriptome analyses reveals the black fruit coloring mechanism of Crataegus maximowiczii C. K. Schneid. Plant physiology and biochemistry : PPB. 194, 111-121. https://doi.org/10.1016/j.plaphy.2022.11.008. [54] Zhu, C.H., Zhou, X.Y., Li, J.X., et al., 2018. Determination of limonin and flavonoids in the lemon fruit at different development stages. Xiandai Shipin Keji. 34, 246-251. https://doi.org/10.13982/j.mfst.1673-9078.2018.2.038. |