[1] Aizen, M.A., Gleiser, G., Sabatino, M., et al., 2016. The phylogenetic structure of plant-pollinator networks increases with habitat size and isolation. Ecol. Lett. 19, 29-36. [2] Amico, G.C., Nickrent, D.L., Vidal-Russell, R., 2019. Macroscale analysis of mistletoe host ranges in the Andean-Patagonian forest. Plant Biol. 21, 150-156. [3] Allio, R., Nabholz, B., Wanke, S., et al., 2021. Genome-wide macroevolutionary signatures of key innovations in butterflies colonizing new host plants. Nat. Commun. 12, 354. [4] APG IV., 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181, 1-20. [5] Atencio, N.O., Vidal-Russell, R., Chacoff, N., et al., 2021. Host range dynamics at different scales: host use by a hemiparasite across its geographical distribution. Plant Biol. 23, 612-620. [6] Aukema, J.E., Martinez del Rio, C., 2002. Variation in mistletoe seed deposition: effects of intra- and interspecific host characteristics. Ecography 25, 139-144. [7] Barlow, B.A., Wiens, D., 1977. Host-parasite resemblance in Australian mistletoes: the case for cryptic mimicry. Evolution 31, 69-84. [8] Barrett, L.G., Heil, M., 2012. Unifying concepts and mechanisms in the specificity of plant-enemy interactions. Trends Plant Sci. 17, 282-292. [9] Bascompte, J., Jordano, P., Melian, C.J., et al., 2003. The nested assembly of plant-animal mutualistic networks. Proc. Natl. Acad. Sci. U.S.A. 100, 9383-9387. [10] Bascompte, J., 2010. Structure and dynamics of ecological networks. Science 329, 765-766. [11] Bergamini, L.L., Lewinsohn, T.M., Jorge, L.R., 2017. Manifold influences of phylogenetic structure on a plant-herbivore network. Oikos 126, 703-712. [12] Bernays, E., Graham, M., 1988. On the evolution of host specificity in phytophagous arthropods. Ecology 69, 886-892. [13] Blick, R.A.J., Burns, K.C., Moles, A.T., 2012. Predicting network topology of mistletoe-host interactions: do mistletoes really mimic their hosts? Oikos 121, 761-771. [14] Blick, R.A.J., Burns, K.C., Moles, A.T., 2013. Dominant network interactions are not correlated with resource availability: a case study using mistletoe host interactions. Oikos 122, 889-895. [15] Bluthgen, N., Menzel, F., Bluethgen, N., 2006. Measuring specialization in species interaction networks. BMC Ecology 6, 9. [16] Cagnolo, L., Salvo, A., Valladares, G., 2011. Network topology: patterns and mechanisms in plant-herbivore and host-parasitoid food webs. J. Anim. Ecol. 80, 342-351. [17] Cirtwill, A.R., Riva, G.V.D., Baker, N.J., et al., 2020. Related plants tend to share pollinators and herbivores, but strength of phylogenetic signal varies among plant families. New Phytol. 226, 909-920. [18] Combes, C., 2001. Parasitism: the ecology and evolution of intimate interactions. Chicago Press, Chicago USA, p. 53. [19] Cooper, N., Jetz, W., Freckleton, R.P., 2010. Phylogenetic comparative approaches for studying niche conservatism. J. Evol. Biol. 23, 2529-2539. [20] Darriba, D., Taboada, G.L., Doallo, R., et al., 2012. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods. 9, 772-772. [21] Delmas, E., Besson, M., Brice, M.H., et al., 2019. Analysing ecological networks of species interactions. Biol. Rev. 94, 16-36. [22] Der, J.P., Nickrent, D.L., 2008. A molecular phylogeny of Santalaceae (Santalales). Syst. Bot. 33, 107-116. [23] Donatti, C.I., Guimaraes, P.R., Galetti, M., et al., 2011. Analysis of a hyperdiverse seed dispersal network: modularity and underlying mechanisms. Ecol. Lett. 14, 773-781. [24] Dormann, C.F., Gruber, B., Frund, J., 2008. Introducing the bipartite package: analysing ecological networks. R News 8, 8-11. [25] Dormann, C., Frund, J., Bluthgen, N., et al., 2009. Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol. J. 2, 7-24. [26] Doyle, J.J., Doyle, J.L., 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11-15. [27] Dunne, J.A., Williams, R.J., Martinez, N.D., 2002. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5, 558-567. [28] Edger, P.P., Heidel-Fischer, H.M., Bekaert, M., et al., 2015. The butterfly plant arms-race escalated by gene and genome duplications. Proc. Natl. Acad. Sci. U.S.A. 112, 8362-8366. [29] Elias, M., Fontaine, C., Frank, van, Veen, F.J., 2013. Evolutionary history and ecological processes shape a local multilevel antagonistic network. Curr. Biol. 23, 1355-1359. [30] Enquist, B.J., West, G.B., Charnov, E.L., et al., 1999. Allometric scaling of production and life-history variation in vascular plants. Nature 401, 907-911. [31] Fadini, R., 2011. Non-overlap of hosts used by three congeneric and sympatric loranthaceous mistletoe species in an Amazonian savanna: host generalization to extreme specialization. Acta Bot. Brasilica. 25, 337-345. [32] Fontaine, C., Thebault, E., Dajoz, I., 2009. Are insect pollinators more generalist than insect herbivores? Proc. Royal Soc. B-Bio. Sci. 276, 3027-3033. [33] Fontaine, C., Thebault, E., 2015. Comparing the conservatism of ecological interactions in plant-pollinator and plant-herbivore networks. Popul. Ecol. 57, 29-36. [34] Frainer, A., McKie, B. G., Amundsen, P.A., et al., 2018. Parasitism and the biodiversity-functioning relationship. Trends Ecol. Evol. 33, 260-268. [35] Genini, J., Cortes, M.C., Guimaraes, P.R., et al., 2012. Mistletoes play different roles in a modular host-parasite network. Biotropica 44, 171-178. [36] Gilbert, G.S., Briggs, H.M., Magarey, R., 2015. The impact of plant enemies shows a phylogenetic signal. PLoS One 10, e0123758. [37] Goslee, S.C., Urban, D.L., 2007. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22, 1-19. [38] Guimera, R., Amaral, L.N., 2005. Functional cartography of complex metabolic networks. Nature 433, 895-900. [39] He, C.G., Feng, Y., Yang, Y.P., 2008. Research on evolution process and driving factors of forest landscape in Xishuangbanna. Yunnan Geogr. Environ. Res. 20, 12-17. (in Chinese, with English abstract). [40] Hutchinson, M.C., Cagua, E.F., Stouffer, D.B., 2017. Cophylogenetic signal is detectable in pollination interactions across ecological scales. Ecology 98, 2640-2652. [41] Ibanez, S., Arene, F., Lavergne, S., 2016. How phylogeny shapes the taxonomic and functional structure of plant-insect networks. Oecologia 180, 989-1000. [42] Jin, Y., Qian, H., 2022. V.PhyloMaker2: An updated and enlarged R package that can generate very large phylogenies for vascular plant. Plant Divers. 44, 335-339. [43] Jordano, P., 1987. Patterns of mutualistic interactions in pollination and seed dispersal-connectance, dependence asymmetries, and coevolution. Am. Nat. 129, 657-677. [44] Jordano, P., Bascompte, J., Olesen, J.M., 2003. Invariant properties in coevolutionary networks of plant-animal interactions. Ecol. Lett. 6, 69-81. [45] Kearse, M., Moir, R., Wilson, A., et al., 2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647-1649. [46] Kembel, S.W., Cowan, P.D., Helmus, M.R., et al., 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463-1464. [47] Krasnov, B.R., Fortuna, M.A., Mouillot, D., et al., 2012. Phylogenetic signal in module composition and species connectivity in compartmentalized host-parasite networks. The Am. Nat. 179, 501-511. [48] Maliet, O., Loeuille, N., Morlon, H., 2020. An individual-based model for the eco-evolutionary emergence of bipartite interaction networks. Ecol. Lett. 23, 1623-1634. [49] Maruyama, P.K., Vizentin-Bugoni, J., Oliveira, G.M., et al., 2014. Morphological and spatio-temporal mismatches shape a Neotropical savanna plant-hummingbird network. Biotropica 46, 740-747. [50] Medan, D., Basilio, A., Devoto, M., et al., 2006. Measuring generalization and connectance in temperate, long-lasting systems. In: Plant pollinator interactions. From specialization to generalization. Edited by Waser, N.M., Ollerton, J., University of Chicago Press, Chicago, USA, pp. 245-259. [51] Mellado, A., Zamora, R., 2017. Parasites structuring ecological communities: The mistletoe footprint in Mediterranean pine forests. Funct. Ecol. 31, 2167-2176. [52] Milner, K.V., Leigh, A., Gladstone, W., et al., 2020. Subdividing the spectrum-quantifying host specialization in mistletoes. Botany 98, 533-543. [53] Mistry, J., 1998. Corticolous lichens as potential bioindicators of fire history: A study in the Cerrado of the Distrito Federal, central Brazil. J. Biogeogr. 25, 409-441. [54] Muller-Landau, H. C., Wright, S. J., Calderon, O., et al., 2002. Assessing recruitment limitation: Concepts, methods and case-studies from a tropical forest. in: Levey, D.J., Silva, W.R., Galetti, M. (Eds.), Seed dispersal and frugivory: Ecology, evolution and conservation. CAB International, pp. 35-53. [55] Muche, M., Muasya, A.M., Tsegay, B.A., 2022. Biology and resource acquisition of mistletoes, and the defense responses of host plants. Ecol. Process. 11, 24. [56] Nickrent, D.L., Malecot, V., 2008. Molecular phylogenetic relationships of Olacaceae and related Santalales. Syst. Bot. 33, 97-106. [57] Nickrent, D.L., Malecot, V., Vidal-Russell, R., et al., 2010. A revised classification of Santalales. Taxon 59, 538-558. [58] Nickrent, D.L., Anderson, F., Kuijt, J., 2019. Inflorescence evolution in Santalales: integrating morphological characters and molecular phylogenetics. Am. J. Bot. 106, 402-414. [59] Nickrent, D.L., 2020. Parasitic angiosperms: How often and how many? Taxon 69, 5-27. [60] Norton, D.A., Carpenter, M.A., 1998. Mistletoes as parasites: host specificity and speciation. Trends Ecol. Evol. 13, 101-105. [61] Norton, D. A., De Lange, P.J., 1999. Host specificity in parasitic mistletoes (Loranthaceae) in New Zealand. Funct. Ecol. 13, 552-559. [62] Olesen, J.M., Bascompte, J., Dupont, Y.L., et al., 2011. Missing and forbidden links in mutualistic networks. Proc. Royal Soc. B-Bio. Sci. 278, 725-732. [63] Olesen, J.M., Bascompte, J., Dupont, Y.L., et al., 2007. The modularity of pollination networks. Proc. Natl. Acad. Sci. U.S.A. 104, 19891-19896. [64] Okubamichael, D.Y., Griffiths, M.E., Ward, D., 2016. Host specificity in parasitic plants-perspectives from mistletoes. AoB Plants 8, plw069. [65] Pagel, M., 1999. Inferring the historical patterns of biological evolution. Nature 401, 877-884. [66] Pequeno, P.A.C.L., Franklin, E., Norton, R.A., 2022. Modelling selection, drift, dispersal and their interactions in the community assembly of Amazonian soil mites. Oecologia 196, 805-814. [67] Piazzon, M., Larrinaga, A.R., Santamaria, L., 2011. Are nested networks more robust to disturbance? A test using epiphyte-tree, comensalistic networks. PLoS One 6, e19637. [68] Poisot, T., Thrall, P.H., Hochberg, M.E., 2012. Trophic network structure emerges through antagonistic coevolution in temporally varying environments. Proc. Royal Soc. B-Bio. Sci. 279, 299-308. [69] Poulin, R., Krasnov, B.R., Mouillot, D., 2011. Host specificity in phylogenetic and geographic space. Trends Parasitol. 27, 355-361. [70] Press, M.C., Phoenix, G.K., 2005. Impacts of parasitic plants on natural communities. New Phytol.166, 737-751. [71] Rawsthorne, J., Watson, D.M., Roshier, D.A., 2011. Implications of movement patterns of a dietary generalist for mistletoe seed dispersal. Austral Ecol. 36, 650-655. [72] Reid, N., Smith, S.S., 2000. Population dynamics of an arid zone mistletoe (Amyema preissii, Loranthaceae) and its host Acacia victoriae (Mimosaceae). Aust. J. Bot. 48, 45-58. [73] Rezende, E.L., Lavabre, J.E., Guimaraes, P.R., et al., 2007. Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448, 925-928. [74] Rezende, E.L., Albert, E.M., Fortuna, M.A., et al., 2009. Compartments in a marine food web associated with phylogeny, body mass, and habitat structure. Ecol. Lett. 12, 779-788. [75] Rodriguez-Cabal, M.A., Barrios-Garcia, M.N., Amico, G.C., et al., 2013. Node-by-node disassembly of a mutualistic interaction web driven by species introductions. Proc. Natl. Acad. Sci. U.S.A. 110, 16503-16507. [76] Roxburgh, L., Nicolson, S.W., 2008. Differential dispersal and survival of an African mistletoe: does host size matter? Plant Ecol. 195, 21-31. [77] Santamaria, L., Rodrigues-Girones, M.A., 2007. Linkage rules for plant-pollinator networks: trait complementarity or exploitation barriers? PLoS Biology 5, e31. [78] Sayago, R., Lopezaraiza-Mikel, M., Quesada, M., et al., 2013. Evaluating factors that predict the structure of a commensalistic epiphyte-phorophyte network. Proc. Royal Soc. B-Bio. Sci. 280, 20122821. [79] Sazatornil, F.D., More, M., Benitez-Vieyra, S., et al., 2016. Beyond neutral and forbidden links: morphological matches and the assembly of mutualistic hawkmoth-plant networks. J. Anim. Ecol. 85, 1586-1594. [80] Stang, M., Klinkhamer, P.G.L., van der Meijden, E., 2007. Asymmetric specialization and extinction risk in plant-flower visitor webs: a matter of morphology or abundance. Oecologia 151, 442-453. [81] Stang, M., Klinkhamer, P.G.L., Waser, N.M., et al., 2009. Size-specific interaction patterns and size matching in a plant-pollinator interaction web. Ann. Bot. 103, 1459-1469. [82] Sui, Y., Zhang, L., 2014. Spatial distribution pattern of mistletoe species in tropical plantation. J. Yunnan Univ. 36, 755-764. (in Chinese, with English abstract). [83] Taberlet, P., Gielly, L., Pautou, G., et al., 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol. Biol. 17, 1105-1109. [84] Thebault, E., Fontaine, C., 2010. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853-856. [85] Thompson, J.N., Femandez, C.C., 2006. Temporal dynamics of antagonism and mutualism in a geographically variable plant-insect interaction. Ecology 87, 103-112. [86] Tobias, J.A., Cornwallis, C.K., Derryberry, E.P., et al., 2014. Species coexistence and the dynamics of phenotypic evolution in adaptive radiation. Nature 506, 359-363. [87] Tylianakis, J.M., Laliberte, E., Nielsenc, A., et al., 2010. Conservation of species interaction networks. Biol. Conserv. 143, 2270-2279. [88] Ulrich, W., Almeida-Neto, M., Gotelli, N.J., 2009. A consumer's guide to nestedness analysis. Oikos 118, 3-17. [89] Valverde, S., Vidiella, B., Montanez, R., et al., 2020. Coexistence of nestedness and modularity in host-pathogen infection networks. Nat. Ecol. Evol. 4, 568. [90] Vazquez, D.P., 2005. Degree distribution in plant-animal mutualistic networks: forbidden links or random interactions? Oikos 108, 421-426. [91] Vazquez, D.P., Melian, C.J., Williams, N.M., et al., 2007. Species abundance and asymmetric interaction strength in ecological networks. Oikos 116, 1120-1127. [92] Vazquez, D.P., Bluthgen, N., Cagnolo, L., et al., 2009a. Uniting pattern and process in plant-animal mutualistic networks: a review. Ann. Bot. 103, 1445-1457. [93] Vazquez, D.P., Chacoff, N.P., Cagnolo, L., 2009b. Evaluating multiple determinants of the structure of plant? Animal mutualistic networks. Ecology 90, 2039-2046. [94] Vidal-Russell, R., Nickrent, D.L., 2008a. The first mistletoes: origins of aerial parasitism in Santalales. Mol. Phylogenet. Evol. 47, 523-537. [95] Vidal-Russell, R., Nickrent, D.L., 2008b. Evolutionary relationships in the showy mistletoe family (Loranthaceae). Am. J. Bot. 95, 1015-1029. [96] Vidal-Russell, R., Premoli, A.C., 2015. Nothofagus trees show genotype difference that influence infection by mistletoes, Misodendraceae. Aust. J. Bot. 63, 541-548. [97] Vitoria, R.S., Vizentin-Bugoni, J., Duarte, L.D.S., 2018. Evolutionary history as a driver of ecological networks: a case study of plant-hummingbird interactions. Oikos 127, 561-569. [98] Wang, X., Zhang, L., 2017. Species diversity and distribution of mistletoes and hosts in four different habitats in Xishuangbanna, Southwest China. J. Yunnan Univ. 39, 701-711. (In Chinese, with English abstract). [99] Watson, D.M., Herring, M., 2012. Mistletoe as a keystone resource: an experimental test. Proc. Royal Soc. B-Bio. Sci. 279, 3853-3860. [100] Wood, C.L., Byers, J.E., Cottingham, K.L., et al., 2007. Parasites alter community structure. Proc. Natl. Acad. Sci. U.S.A. 104, 9335-9339. [101] Xia, N., Gilber, M.G., 2003. Santalaceae. In: Flora of China, vol. 5. Science Press and Missouri Botanical Garden Press, Beijing and St. Louis, pp. 218-219. [102] Zanne, A.E., Lopez-Gonzalez, G., Coomes, D.A., et al., 2009. Global wood density database. Plant Economics. Dryad Digital Repository, https://doi.org/10.5061/dryad.234. [103] Zhang, K., 1963. A preliminary study on the climatic characteristic and the formation factors in southern Yunnan. Acta Meteorol. Sin. 33, 218-230. (In Chinese, with English abstract). [104] Zhu, H., Cao, M., Hu, H., 2006. Geological history, flora, and vegetation of Xishuangbanna, southern Yunnan, China. Biotropica 38, 310-317. |