Plant Diversity ›› 2024, Vol. 46 ›› Issue (02): 219-228.DOI: 10.1016/j.pld.2023.07.009
Nian Zhoua,b, Ke Miaoa,b, Changkun Liuc, Linbo Jiaa, Jinjin Hua, Yongjiang Huanga, Yunheng Jia,d
收稿日期:
2023-02-27
修回日期:
2023-07-22
出版日期:
2024-03-25
发布日期:
2024-04-07
通讯作者:
Nian Zhou,E-mail:zhounian@mail.kib.ac.cn;Ke Miao,E-mail:miaoke@mail.kib.ac.cn;Changkun Liu,E-mail:liuchangkun@stu.scu.edu.cn;Linbo Jia,E-mail:jialinbo@mail.kib.ac.cn;Jinjin Hu,E-mail:hujinjin@mail.kib.ac.cn;Yongjiang Huang,E-mail:huangyongjiang@mail.kib.ac.cn;Yunheng Ji,E-mail:jiyh@mail.kib.ac.cn
基金资助:
Nian Zhoua,b, Ke Miaoa,b, Changkun Liuc, Linbo Jiaa, Jinjin Hua, Yongjiang Huanga, Yunheng Jia,d
Received:
2023-02-27
Revised:
2023-07-22
Online:
2024-03-25
Published:
2024-04-07
Contact:
Nian Zhou,E-mail:zhounian@mail.kib.ac.cn;Ke Miao,E-mail:miaoke@mail.kib.ac.cn;Changkun Liu,E-mail:liuchangkun@stu.scu.edu.cn;Linbo Jia,E-mail:jialinbo@mail.kib.ac.cn;Jinjin Hu,E-mail:hujinjin@mail.kib.ac.cn;Yongjiang Huang,E-mail:huangyongjiang@mail.kib.ac.cn;Yunheng Ji,E-mail:jiyh@mail.kib.ac.cn
Supported by:
摘要: Here, we infer the historical biogeography and evolutionary diversification of the genus Lilium. For this purpose, we used the complete plastomes of 64 currently accepted species in the genus Lilium (14 plastomes were newly sequenced) to recover the phylogenetic backbone of the genus and a time-calibrated phylogenetic framework to estimate biogeographical history scenarios and evolutionary diversification rates of Lilium. Our results suggest that ancient climatic changes and geological tectonic activities jointly shaped the distribution range and drove evolutionary radiation of Lilium, including the Middle Miocene Climate Optimum (MMCO), the late Miocene global cooling, as well as the successive uplift of the Qinghai-Tibet Plateau (QTP) and the strengthening of the monsoon climate in East Asia during the late Miocene and the Pliocene. This case study suggests that the unique geological and climatic events in the Neogene of East Asia, in particular the uplift of QTP and the enhancement of monsoonal climate, may have played an essential role in formation of uneven distribution of plant diversity in the Northern Hemisphere.
Nian Zhou, Ke Miao, Changkun Liu, Linbo Jia, Jinjin Hu, Yongjiang Huang, Yunheng Ji. Historical biogeography and evolutionary diversification of Lilium (Liliaceae): New insights from plastome phylogenomics[J]. Plant Diversity, 2024, 46(02): 219-228.
Nian Zhou, Ke Miao, Changkun Liu, Linbo Jia, Jinjin Hu, Yongjiang Huang, Yunheng Ji. Historical biogeography and evolutionary diversification of Lilium (Liliaceae): New insights from plastome phylogenomics[J]. Plant Diversity, 2024, 46(02): 219-228.
[1] Adams, J.S., 2009. Species richness:patterns in the diversity of life. Springer Berlin, Heidelberg. [2] Allen, A.P., Gillooly, J.F., Savage, V.M., et al., 2006. Kinetic effects of temperature on rates of genetic divergence and speciation. Proc. Natl. Acad. Sci. U.S.A. 103, 9130-9135. [3] An, Z.S., Kutzbach, J.E., Prell, W.L., et al., 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature 411, 62-66. [4] Baranova, M., 1988. A synopsis of the system of the genus Lilium (Liliaceae). Bot. Zh. 73, 1319-1329. [5] Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic:a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120. [6] Carlsen, M.M., Fer, T., Schmickl, R., et al., 2018. Resolving the rapid plant radiation of early diverging lineages in the tropical Zingiberales:pushing the limits of genomic data. Mol. Phylogenet. Evol. 128, 55-68. [7] Chan, P.P., Lin, B.Y., Mak, A.J., et al., 2021. tRNAscan-SE 2.0:improved detection and functional classification of transfer RNA genes. Nucleic. Acids Res. 49, 9077-9096. [8] Chernomor, O., von Haeseler, A., Minh, B.Q., 2016. Terrace aware data structure for phylogenomic inference from supermatrices. Syst. Biol. 65, 997-1008. [9] Comber, H.F., 1949. A new classification of the genus Lilium, in:Chittenden, F.J. (Ed.), Lily year book of RHS. Royal Horticultural Society, London. pp. 85-105. [10] Darling, A.C.E, Mau, B., Blattner, F.R., et al., 2004. Mauve:multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 14, 1394-1403. [11] Do, H.D.K, Kim, C., Chase, M.W., et al., 2020. Implications of plastome evolution in the true lilies (monocot order Liliales). Mol. Phylogenet. Evol. 148, 106818. [12] Donoghue, M.J., Bell, C.D., Li, J., 2001. Phylogenetic patterns in northern hemisphere plant geography. Int. J. Plant Sci. 162, S41-S52. [13] Doyle, J.J., Doyle, J.L., 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11-15. [14] Drummond, A.J., Rambaut, A., Marc, A.S., et al., 2018. BEAUti v1.10.4. https://github.com/beast-dev/beast-mcmc. [15] Du, Y., Bi, Y., Yang, F., et al., 2017. Complete chloroplast genome sequences of Lilium:insights into evolutionary dynamics and phylogenetic analyses. Sci. Rep. 7, 5751. [16] Du, Y.P., He H.B., Wang, Z., et al., 2014. Molecular phylogeny and genetic variation in the genus Lilium native to China based on the internal transcribed spacer sequences of nuclear ribosomal DNA. J. Plant Res. 127, 249-263. [17] Duan, Q., Liu, F., Gui, D., et al., 2022. Phylogenetic analysis of wild species and the maternal origin of cultivars in the genus Lilium using 114 plastid genomes. Front. Plant Sci. 13, 865606, https://doi.org/10.3389/fpls.2022.865606. [18] Endlicher, S.L., 1836. Genera Plantarum. Vienna. [19] Favre, A., Paeckert, M., Pauls, S.U., et al., 2015. The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas. Biol. Rev. 90, 236-253. [20] Flower, B.P., Kennett, J.P., 1994. The middle Miocene climatic transition:East Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeogr. Palaeocl. 108, 537-555. [21] Folk, R.A., Mandel, J.R., Freudenstein, J.V., 2016. Ancestral gene flow and parallel organellar genome capture result in extreme phylogenomic discord in a lineage of angiosperms. Syst. Biol. 66, 320-337. [22] Gao, Y.D., Gao, X.F., 2016. Accommodating Nomocharis in Lilium (Liliaceae). Phytotaxa 277, 205-210. [23] Gao, Y.D., Harris, A., Zhou, S.D., et al., 2013. Evolutionary events in Lilium (including Nomocharis, Liliaceae) are temporally correlated with orogenies of the Q-T plateau and the Hengduan Mountains. Mol. Phylogenet. Evol. 68, 443-460. [24] Gao, Y.D., Hohenegger, M., Harris, A., et al., 2012. A new species in the genus Nomocharis Franchet (Liliaceae):evidence that brings the genus Nomocharis into Lilium. Plant Syst. Evol. 298, 69-85. [25] Givnish, T.J., 1997. Adaptive Radiation and Molecular Systematics:Aims and Conceptual Issues. In:Givnish, T.J., Systma, K.J. (Eds.). Molecular Evolution and Adaptive Radiation. Cambridge University Press, Cambridge, pp. 1-54. [26] Givnish, T.J., Skin-Ner, M.W., Resetnik, I., et al., 2020. Evolution, geographical spread and floral diversification of the genus Lilium with special reference to the lilies of North America. Evolution 74, 26-44. [27] Gladenkov, A.Y., Oleinik, A.E., Marincovich, L., et al., 2002. A refined age for the earliest opening of Bering Strait. Palaeogeogr. Palaeocl. 183, 321-328. [28] Goldberg, E.E., Lancaster, L.T., Ree, R.H., 2011. Phylogenetic inference of reciprocal effects between geographic range evolution and diversification. Syst. Biol. 60, 451-465. [29] Gong, X., Hung, K.H., Ting, Y.W., et al., 2017. Frequent gene flow blurred taxonomic boundaries of sections in Lilium L. (Liliaceae). PLoS ONE 12, e0183209. [30] Graham, A., 2011. A natural history of the new world:the ecology and evolution of plants in the Americas. Q. Rev. Biol. 86, 357-358. [31] Harrison, T., Copeland, P., Kidd, W., et al., 1992. Raising Tibet. Science 255, 1663-1670. [32] Herbert, T.D., Lawrence, K.T., Tzanova, A., et al., 2016. Late Miocene global cooling and the rise of modern ecosystems. Nat. Geosci. 9, 843-847. [33] Holbourn, A.E., Kuhnt, W., Clemens, S.C., et al., 2018. Late Miocene climate cooling and intensification of southeast Asian winter monsoon. Nat. Commun. 9, 1584. [34] Hong, D.Y., Blackmore, S., 2015. Plants of China:A Companion to the Flora of China. Cambridge University Press, Cambridge. [35] Hooker, J.J., Collinson, M.E., Sille, N.P., 2004. Eocene-Oligocene mammalian faunal turnover in the Hampshire Basin, UK:calibration to the global time scale and the major cooling event. J. Geol. Soc. 161, 161-172. [36] Huang, J., Yang, L.Q., Yu, Y., et al., 2018. Molecular phylogenetics and historical biogeography of the tribe Lilieae (Liliaceae):bi-directional dispersal between biodiversity hotspots in Eurasia. Ann. Bot. 122, 1245-1262. [37] Huang, Y.L., Li, X.J., Yang, Z.Y., et al., 2016. Analysis of complete chloroplast genome sequences improves phylogenetic resolution in Paris (Melanthiaceae). Front. Plant Sci. 7, 1797. [38] Huelsenbeck, J.P., Ronquist, F., 2001. MRBAYES:Bayesian inference of phylogenetic trees. Bioinformatics 17, 754-755. [39] Jacques, F.M.B., Guo, S.X., Su, T., et al., 2011. Quantitative reconstruction of the Late Miocene monsoon climates of southwest China:a case study of the Lincang flora from Yunnan Province. Palaeogeogr. Palaeocl. 304, 318-327. [40] Jacques, F.M.B., Shi, G., et al., 2015. A tropical forest of the middle Miocene of Fujian (SE China) reveals Sino-Indian biogeographic affinities. Rev. Palaeobot. Palynol. 216, 76-91. [41] Jansen, R.K., Cai, Z., Raubeson, L.A., et al., 2007. Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc. Natl. Acad. Sci. U.S.A. 104, 19369-19374. [42] Ji, Y.H., Landis, B.J., Yang, J., et al., 2023. Phylogeny and evolution of Asparagaceae subfamily Nolinoideae:new insights from plastid phylogenomics. Ann. Bot. 131, 301-312. [43] Ji, Y.H., Yang, L.F., Chase, M.W., et al., 2019. Plastome phylogenomics, biogeography, and clade diversification of Paris (Melanthiaceae). BMC Plant Biol. 9, 543. [44] Ji, Y.H., Landis, J. B., Yang, J., et al., 2023. Phylogeny and evolution of Asparagaceae subfamily Nolinoideae:New insights from plastid phylogenomics. Ann. Bot. 131, 301-312. [45] Jin, J.J., Yu, W.B., Yang, J.B., et al., 2020. GetOrganelle:a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21, 241. [46] Katoh, K., Standley, DM., 2013. MAFFT multiple sequence alignment software version 7:improvements in performance and usability. Mol. Biol. Evol. 30, 772-780. [47] Kearse, M., Moir, R., Wilson, A., et al., 2012. Geneious Basic:an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647-1649. [48] Kim, H.T., Lim, K.B., Kim, J.S., 2019. New insights on Lilium phylogeny based on a comparative phylogenomic study using complete plastome sequences. Plants 8, 547. [49] Kim, J.H., Lee, S.I., Kim, B.R., et al., 2017. Chloroplast genomes of Lilium lancifolium, L. amabile, L. callosum, and L. philadelphicum:molecular characterization and their use in phylogenetic analysis in the genus Lilium and other allied genera in the order Liliales. PLoS One 12, e0186788. [50] Kim, J.S., Kim, J.H., 2018. Updated molecular phylogenetic analysis, dating and biogeographical history of the lily family (Liliaceae:Liliales). Bot. J. Linn. Soc. 187, 579-593. [51] Latham, R.E., Ricklefs, R.E., 1993. Continental Comparisons of Temperate-Zone Tree Species Diversity. In:Ricklefs, R.E., Schluter, D. (Eds.). Species Diversity in Ecological Communities:Historical and Geographical Perspectives. University of Chicago Press, Chicago, pp. 294-318. [52] Lewis, A.R., Marchant, D.R., Ashworth, A.C., et al., 2007. Major middle Miocene global climate change:evidence from East Antarctica and the Transantarctic Mountains. Geol. Soc. Am. Bull. 119, 1449-1461. [53] Li, H.T., Yi, T.S., Gao, L.M., et al., 2019. Origin of angiosperms and the puzzle of the Jurassic gap. Nat. Plants 5, 461-470. [54] Li, J., Cai, J., Qin, H.H., et al., 2022. Phylogeny, age, and evolution of tribe Lilieae (Liliaceae) based on whole plastid genomes. Front. Plant Sci. 12, 699226. [55] Li, J.J., 2006. The Qinghai-Tibet Plateau uplifting and environmental evolution in Asia:article collection of academician Li Ji-Jun. Science Press, Beijing. [56] Li, S.F., Valdes, P.J., Farnsworth, A., et al., 2021. Orographic evolution of northern Tibet shaped vegetation and plant diversity in Eastern Asia. Sci. Adv. 7, eabc7741. [57] Liang, S.Y., Tamura, M.N., 2000. Lilium L. In:Wu, Z.Y., Raven, P.H. (Eds). Flora of China. Science Press and Missouri Botanical Garden Press, Beijing and St. Louis., pp. 135-149. [58] Linder, H.P., 2008. Plant species radiations:where, when, why? Philos. Trans. R. Soc. B-Biol. Sci. 363, 3097-3105. [59] Liu, C.Q., Sun, H., 2019. Pollination in Lilium sargentiae (Liliaceae) and the first confirmation of long-tongued hawkmoths as a pollinator niche in Asia:Hawkmoth pollination in Lilium sargentiae. J. Syst. Evol. 57, 81-88. [60] Liu, X.D., Dong, B.W., 2013. Influence of the Tibetan Plateau uplift on the Asian monsoon-arid environment evolution. Chin. Sci. Bull. 58, 4277-4291. [61] Lu, H., Guo, Z., 2013. Evolution of the monsoon and dry climate in East Asia during late Cenozoic:A review. Sci. China Earth Sci. 57, 70-79. [62] McKain, M.R., Johnson, M.G., Uribe-Concers, S., et al., 2018. Practical considerations for plant phylogenomics. Appl. Plant Sci. 6, e1038. [63] Moore, M.J., Bell, C.D., Soltis, P.S., et al., 2007. Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proc. Natl. Acad. Sci. U.S.A. 104, 19363-19368. [64] Moore, M.J., Soltis, P.S., Bell, C.D., et al., 2010. Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proc. Natl. Acad. Sci. U.S.A. 107, 4623-4628. [65] Morales-Briones, D.F., Liston, A., Tank, D.C., 2018. Phylogenomic analyses reveal a deep history of hybridization and polyploidy in the Neotropical genus Lachemilla (Rosaceae). New Phytol. 218, 1668-1684. [66] Muellner-Riehl, A.N., Schnitzle,r J., Kissling, W.D., et al., 2019. Origins of global mountain plant biodiversity:testing the mountain-geobiodiversity hypothesis. J. Biogeogr. 46, 2826-2838. [67] Nguyen, L.T., Schmidt, H.A., von Haeseler, A., et al., 2015. IQ-TREE:a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268-274. [68] Nishikawa, T., Okazaki, K., Uchino, T., et al., 1999. A molecular phylogeny of Lilium in the internal transcribed spacer region of nuclear ribosomal DNA. J. Mol. Evol. 49, 238-249. [69] Nurk, N.M., Uribe-Convers, S., Gehrke, B., et al., 2015. Oligocene niche shift, Miocene diversification-cold tolerance and accelerated speciation rates in the St. John's Worts (Hypericum, Hypericaceae). BMC Evol. Biol. 15, 80. [70] Ohlemuller, R., 2011. Running out of climate space. Science 334, 613-614. [71] Paradis, E., Schliep, K., 2019. Ape 5.0:an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526-528. [72] Parks, M., Cronn, R., Liston, A., 2009. Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes. BMC Biology 7, 84. [73] Pearson, P.N., Palmer, M.R., 2000. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406, 695-699. [74] Philippe, H., Brinkmann, H., Lavrov, D.V., et al., 2011. Resolving difficult phylogenetic questions:why more sequences are not enough. PLoS Biology 9, e1000602. [75] Philippe, H., Delsuc, F., Brinkmann, H., et al., 2005. Phylogenomics. Annu. Rev. Ecol. Evol. Syst. 36, 541-562. [76] Posada, D., Buckley, T.R., 2004. Model selection and model averaging in phylogenetics:advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst. Biol. 53, 793-808. [77] Posada, D., Crandall, K.A., 1998. MODELTEST:testing the model of DNA substitution. Bioinformatics 14, 817-818. [78] Qian, H., 2001. A comparison of generic endemism of vascular plants between East Asia and North America. Int. J. Plant Sci. 162, 191-199. [79] Qian, H., 2002. A comparison of the taxonomic richness of temperate plants in East Asia and North America. Am. J. Bot. 89, 1818-1825. [80] Rabosky, D.L., Grundler, M., Anderson, C., et al., 2014. BAMMtools:an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 5, 701-707. [81] Rambaut, A., 2016. FigTree v1.4.3. http://tree.bio.ed.ac.uk/software/figtree/. [82] Rambaut, A., Drummond, A.J., 2018. TreeAnnotator v1.10.4. https://github.com/beast-dev/beast-mcmc. [83] Rambaut, A., Drummond, A.J., Xie, D., et al., 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901-904. [84] Rieseberg, L.H., Wendel, J.F., 1993. Introgression and Its Consequences in Plants. In:Harrison, R.G. (Ed.). Hybrid Zones and the Evolutionary Process. Oxford University Press, New York, pp. 70-114. [85] Rokas, A., Carroll, S.B., 2005. More genes or more taxa? The relative contribution of gene number and taxon number to phylogenetic accuracy. Mol. Biol. Evol. 22, 1337-1344. [86] Rong, L., Lei, J., Wang, C., 2011. Collection and evaluation of the genus Lilium resources in Northeast China. Genet. Resour. Crop Evol. 58, 115-123. [87] Rosenberg, M.S., Kumar, S., 2001. Incomplete taxon sampling is not a problem for phylogenetic inference. Proc. Natl. Acad. Sci. U.S.A. 98, 10751-10756. [88] Schluter, D., 2009. Evidence for ecological speciation and its alternative. Science 323, 737-741. [89] Schluter, D., 2016. Speciation, ecological opportunity, and latitude. Am. Nat. 187, 1-18. [90] Schluter, D., Pennell, M.W., 2017. Speciation gradients and the distribution of biodiversity. Nature 546, 48-55. [91] Soltis, D.E., Johnson, L.A., Looney, C., 1996. Discordance between ITS and chloroplast topologies in the Boykinia group (Saxifragaceae). Syst. Bot. 21, 169-185. [92] Soltis, D.E., Kuzoff, R.K., 1995. Discordance between nuclear and chloroplast phylogenies in the Heuchera group (Saxifragaceae). Evolution 49, 727-742. [93] Spicer, R.A., 2017. Tibet, the Himalaya, Asian monsoons and biodiversity-In what ways are they related? Plant Divers. 39, 233-244. [94] Spicer, R.A., Farnsworth, A., Su, T., 2020. Cenozoic topography, monsoons and biodiversity conservation within the Tibetan Region:An evolving story. Plant Divers. 42, 229-254. [95] Spicer, R.A., Su, T., Valdes, P.J., et al., 2021. The topographic evolution of the Tibetan Region as revealed by palaeontology. Palaeobiodivers. Palaeoenviron. 101, 213-243. [96] Su, N., Hodel, G.J.R., Wang, X. et al., 2023. Molecular phylogeny and inflorescence evolution of Prunus (Rosaceae) based on RAD-seq and genome skimming analyses. Plant Divers. 45, 397-408. [97] Stull, G.W., Soltis, P.S., Soltis, D.E., et al., 2020. Nuclear phylogenomic analyses of asterids conflict with plastome trees and support novel relationships among major lineages. Am. J. Bot. 107, 790-805. [98] Suchard, M.A., Lemey, P., Baele, G., et al., 2018. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, vey016. [99] Sun, M., Folk, R.A., Gitzendanner, M.A., et al., 2020. Recent accelerated diversification in rosids occurred outside the tropics. Nat. Commun. 11, 3333. [100] Sun, X.J., Wang, P.X., 2005. How old is the Asian monsoon system? Palaeobotanical records from China. Palaeogeogr. Palaeocl. 222, 181-222. [101] Svenning, J.C., Eiserhardt, W.L., Normand, S., et al., 2015. Ordonez A, Sandel B. The influence of paleoclimate on present-day patterns in biodiversity and ecosystems. Annu. Rev. Ecol. Evol. Syst. 46, 551-572. [102] Tiffney, B.H., 1985.The Eocene North Atlantic land bridge:its importance in Tertiary and modern phytogeography of the northern Hemisphere. J. Arnold. Arbor. 66, 243-273. [103] Tillich, M., Lehwark, P., Pellizzer, T., et al., 2017. GeSeq-versatile and accurate annotation of organelle genomes. Nucleic. Acids Res. 45, W6-W11. [104] Wan, S.M., Li, A.C., Clift, P.D., et al., 2007. Development of the East Asian monsoon:mineralogical and sedimentologic records in the northern South China Sea since 20 Ma. Palaeogeogr. Palaeocl. 254, 561-582. [105] Wang, B., Shi, G.L, Xu, C., et al., 2021. The mid-Miocene Zhangpu biota reveals an outstandingly rich rainforest biome in East Asia. Sci. Adv. 7, eabg0625. [106] Wang, P.X., Wang, B., Cheng, H., et al., 2017. The global monsoon across time scales:Mechanisms and outstanding issues. Earth Sci. Rev. 74, 84-121. [107] Wen, J., Xie, D.F., Price, M., et al. 2021. Backbone phylogeny and evolution of Apioideae (Apiaceae):new insights from phylogenomic analyses of plastome data. Mol. Phylogenet. Evol. 161, 107183. [108] Wen, J., Zhang, J.Q., Nie, Z.L., et al., 2014. Evolutionary diversifications of plants on the Qinghai-Tibetan Plateau. Front. Genet. 5, 4. [109] Wendel, J.F., Doyle, J.J., 1998. Phylogenetic Incongruence:Window into Genome History and Molecular Evolution. In:Soltis, D.E., Soltis, P.S., Doyle, J.J. (Eds.). Molecular Systematics of Plants II. Springer, Boston, pp. 265-296. [110] Whitfield, J.B., Lockhart, P.J., 2007. Deciphering ancient rapid radiations. Trends Ecol. Evol. 22, 258-265. [111] Wick, R.R., Schultz, M.B., Zobel, J., et al., 2015. Bandage:interactive visualization of de novo genome assemblies. Bioinformatics 31, 3350-3352. [112] Wilson, E.H., 1925. The Lilies of Eastern Asia:A Monograph. Dulau and Company Ltd., London. [113] Wu, X.W., Li, S.F., Xiong, L., et al., 2006. Distribution situation and suggestion on protecting wild lilies in Yunnan Province. J. Plant Genet. Resour. 7, 3327-3330. [114] Xing, Y.W., Ree, R.H., 2017. Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proc. Natl. Acad. Sci. U.S.A. 114, E3444-E3451. [115] Xu, X.M, Liu, D.H., Zhu, S.X., et al., 2023. Phylogeny of Trigonotis in China-with a special reference to its nutlet morphology and plastid genome. Plant Divers. 45, 409-421. [116] Yang, L.F., Yang, Z.Y., Liu, C.K., et al., 2019. Chloroplast phylogenomic analysis provides insights into the evolution of the largest eukaryotic genome holder, Paris japonica (Melanthiaceae). BMC Plant Biol. 19, 293. [117] Yao, Y.F., Bruch, A.A., Mosbrugger, V., et al., 2011. Quantitative reconstruction of Miocene climate patterns and evolution in Southern China based on plant fossils. Palaeogeogr. Palaeocl. 304, 291-307. [118] You, Y., Huber, M., Muller, R.D., et al., 2009. Simulation of the middle Miocene climate optimum. Geophys. Res, Lett. 36, L04702. [119] Yu, Y., Blair, C., He, X., 2020. RASP 4:Ancestral state reconstruction tool for multiple genes and characters. Mol. Biol. Evol. 37, 604-606. [120] Zachos, J., Pagani, M., Sloan, L., et al., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686-693. [121] Zachos, J.C., Dickens, G.R., Zeebe, R.E., 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279-283. [122] Zhang, Q.Q., Ferguson, D.K., Mosbrugger, V., et al., 2012. Vegetation and climatic changes of SW China in response to the uplift of Tibetan Plateau. Palaeogeogr. Palaeocl. 363, 23-36. [123] Zheng, D., Yao, T.D., 2005. Uplifting of Tibetan Plateau with its environmental effects. Adv. Earth Sci. 21, 451-458. |
[1] | Wei Wang, Kun Xin, Yujun Chen, Yuechao Chen, Zhongmao Jiang, Nong Sheng, Baowen Liao, Yanmei Xiong. Spatio-temporal variation of water salinity in mangroves revealed by continuous monitoring and its relationship to floristic diversity[J]. Plant Diversity, 2024, 46(01): 134-143. |
[2] | Shi-Guang Wei, Lin Li, Kun-Dong Bai, Zhi-Feng Wen, Jing-Gang Zhou, Qin Lin. Community structure and species diversity dynamics of a subtropical evergreen broad-leaved forest in China: 2005 to 2020[J]. Plant Diversity, 2024, 46(01): 70-77. |
[3] | Cindy Q. Tang, Shi-Qian Yao, Peng-Bin Han, Jian-Ran Wen, Shuaifeng Li, Ming-Chun Peng, Chong-Yun Wang, Tetsuya Matsui, Yong-Ping Li, Shan Lu, Yuan He. Forest characteristics, population structure and growth trends of threatened relict Pseudotsuga forrestii in China[J]. Plant Diversity, 2023, 45(04): 422-433. |
[4] | Hong Qian, Jian Zhang, Mei-Chen Jiang. Global patterns of fern species diversity: An evaluation of fern data in GBIF[J]. Plant Diversity, 2022, 44(02): 135-140. |
[5] | Li Xue, Linbo Jia, Gi-soo Nam, Yongjiang Huang, Shitao Zhang, Yuqing Wang, Zhuo Zhou, Yongsheng Chen. Involucre fossils of Carpinus, a northern temperate element, from the Miocene of China and the evolution of its species diversity in East Asia[J]. Plant Diversity, 2020, 42(03): 155-167. |
[6] | Hua Zhu, Yong Chai, Shisun Zhou, Lichun Yan, Jipu Shi, Guoping Yang. Combined community ecology and floristics, a synthetic study on the upper montane evergreen broad-leaved forests in Yunnan, southwestern China[J]. Plant Diversity, 2016, 38(06): 295-302. |
[7] | Ke Xia, Lei Fan, Wei-bang Sun, Wen-yun Chen. Conservation and fruit biology of Sichou oak (Quercus sichourensis, Fagaceae) – A critically endangered species in China[J]. Plant Diversity, 2016, 38(05): 233-237. |
[8] | Zhe Ren a, b, Hua Peng a, *, Zhen-Wen Liu a, **. The rapid climate change-caused dichotomy on subtropical evergreen broad-leaved forest in Yunnan: Reduction in habitat diversity and increase in species diversity[J]. Plant Diversity, 2016, 38(03): 142-148. |
[9] | LIU Pei-Gui1, WANG Xiang-Hua1 , YU Fu-Qiang1 , CHEN Juan1 , 3 , TIAN Xiao-Fei1 , 4 DENG Xiao-Juan1 , 2 , XIE Xue-Dan1 , 2 , SHI Xiao-Fei1 , 2 . Fungous Kingdom: Yunnan of China and Her Ectomycorrhizal Macrofungal Species Diversity[J]. Plant Diversity, 2009, 31(S16): 15-20. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||