Ainsworth, E.A., Beier, C., Calfapietra, C., Ceulemans, R., Durand-Tardif, M., Farquhar, G.D., et al., 2008. Next generation of elevated[CO2] experiments with crops:a critical investment for feeding the future world. Plant Cell Environ. 31, 1317-1324. Ainsworth, E.A., Davey, P.A., Bernacchi, C.J., Dermody, O.C., Heaton, E.A., Moore, D.J., et al., 2002. A meta-analysis of elevated[CO2] effects on soybean (Glycine max) physiology, growth and yield. Glob. Chang. Biol. 8, 695-709. Ainsworth, E.A., Rogers, A., Blum, H., Nosberger, J., Long, S.P., 2003. Variation in acclimation of photosynthesis in Trifolium repens after eight years of exposure to free air CO2 enrichment (FACE). J. Exp. Bot. 54, 2769-2774. Arenque, B.C., Grandis, A., Pocius, O., de Souza, A.P., Buckeridge, M.S., 2014. Responses of Senna reticulata, a legume tree from the Amazonian floodplains, to elevated atmospheric CO2 concentration and waterlogging. Trees Struct. Funct. 28, 1021-1034. Bernacchi, C.J., Leakey, A.D.B., Heady, L.E., Morgan, P.B., Dohleman, F.G., McGrath, J.M., et al., 2006. Hourly and seasonal variation in photosynthesis and stomatal conductance of soybean grown at future CO2 and ozone concentrations for 3 years under fully open-air field conditions. Plant Cell Environ. 29, 2077-2090. Bishop, K.A., Betzelberger, A.M., Long, S.P., Ainsworth, E.A., 2015. Is there potential to adapt soybean (Glycine max Merr.) to future[CO2]? An analysis of the yield response of 18 genotypes in free-air CO2 enrichment. Plant Cell Environ. 38, 1765-1774. Bloom, A.J., Burger, M., Rubio-Asensio, J.S., Cousins, A.B., 2010. Carbon dioxide enrichment inhibits nitrate assimilation in wheat and Arabidopsis. Science 328, 899-903. Bloom, A.J., Smart, D.R., Nguyen, D.T., Searles, P.S., 2002. Nitrogen assimilation and growth of wheat under elevated carbon dioxide. Proc. Natl. Acad. Sci. U. S. A. 99, 1730-1735. Borisjuk, L., Rolletschek, H., 2009. The oxygen status of the developing seed. New Phytol. 182, 17-30. Caldwell, C.R., Britz, S.J., Mirecki, R.M., 2005. Effect of temperature, elevated carbon dioxide, and drought during seed development on the isoflavone content of dwarf soybean[Glycine max (L.) Merrill] grown in controlled environments. J. Agric. Food Chem. 53, 1125-1129. Carrera, C., Martínez, M.J., Dardanelli, J., Balzarini, M., 2011. Environmental variation and correlation of seed components in nontransgenic soybeans:protein, oil, unsaturated fatty acids, tocopherols, and isoflavones. Crop Sci. 51, 800-809. Cernusak, L.A., Winter, K., Martinez, C., Correa, E., Aranda, J., Garcia, M., et al., 2011. Responses of legume versus nonlegume tropical tree seedlings to elevated CO2 concentration. Plant Physiol. 157, 372-385. Duan, B., Lu, Y., Yin, C., Junttila, O., Li, C., 2005. Physiological responses to drought and shade in two contrasting Picea asperata populations. Physiol. Plant. 124, 476-484. Ekman, Å., Bülow, L., Stymne, S., 2007. Elevated atmospheric CO2 concentration and diurnal cycle induce changes in lipid composition in Arabidopsis thaliana. New Phytol. 174, 591-599. Franks, P.J., Adams, M.A., Amthor, J.S., Barbour, M.M., Berry, J.A., Ellsworth, D.S., et al., 2013. Sensitivity of plants to changing atmospheric CO2 concentration:from the geological past to the next century. New Phytol. 197, 1077-1094. Gillespie, K.M., Rogers, A., Ainsworth, E.A., 2011. Growth at elevated ozone or elevated carbon dioxide concentration alters antioxidant capacity and response to acute oxidative stress in soybean (Glycine max). J. Exp. Bot. 62, 2667-2678. https://doi.org/10.1093/jxb/erq435. Högy, P., Wieser, H., Kohler, P., Schwadorf, K., Breuer, J., Erbs, M., et al., 2009. Does elevated atmospheric CO2 allow for sufficient wheat grain quality in the future? J. Appl. Bot. Food Qual. 82, 114-121. IPCC, 2007. Climate change 2007:the physical science basis. In:Solomon, S., Qin, D., Manning, M., Marquis, M., Averyt, K., Tignor, M.M.B., Miller, Henry LeRoy, Chen, Z. (Eds.), Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 1-18. Izquierdo, N.G., Aguirrezábal, L.A.N., Andrade, F.H., Geroudet, C., Valentinuz, O., Pereyra Iraola, M., 2009. Intercepted solar radiation affects oil fatty acid composition in crop species. Field Crop. Res. 114, 66-74. Leakey, A.D.B., 2009. Rising atmospheric carbon dioxide concentration and the future of C4 crops for food and fuel. Proc. R. Soc. B Biol. Sci. 276, 2333-2343. Lenka, N.K., Lenka, S., Thakur, J.K., Elanchezhian, R., Aher, S.B., Simaiya, V., et al., 2017. Interactive effect of elevated carbon dioxide and elevated temperature on growth and yield of soybean. Curr. Sci. 113, 2305-2310. Li, W., Li, M., Zhang, W., Welti, R., Wang, X., 2004. The plasma membrane-bound phospholipase Ddelta enhances freezing tolerance in Arabidopsis thaliana. Nat. Biotechnol. 22, 427-433. Liu, K.S., 1997. Chemistry and nutritional value of soybean components. In:Liu, K.S.(Ed.), Soybeans:Chemistry, Technology and Utilization. Chapman & Hall, New York, pp. 15-113. Locke, A.M., Sack, L., Bernacchi, C.J., Ort, D.R., 2013. Soybean leaf hydraulic conductance does not acclimate to growth at elevated[CO2] or temperature in growth chambers or in the field. Ann. Bot. 112, 911-918. Loladze, I., 2002. Rising atmospheric CO2 and human nutrition:toward globally imbalanced plant stoichiometry? Trends Ecol. Evol. 17, 457-461. Ma, L., Li, B., Han, F., Yan, S., Wang, L., Sun, J., 2015. Evaluation of the chemical quality traits of soybean seeds, as related to sensory attributes of soymilk. Food Chem. 173, 694-701. Miquel, M., Browse, J., 1992. Arabidopsis mutants deficient in polyunsaturated fatty acid synthesis. Biochemical and genetic characterization of a plant oleoylphosphatidylcholine desaturase. J. Biol. Chem. 267, 1502-1509. Myers, S.S., Zanobetti, A., Kloog, I., Huybers, P., Leakey, A.D., Bloom, A.J., et al., 2014. Increasing CO2 threatens human nutrition. Nature 510, 139-142. Pal, M., Chaturvedi, A., Pandey, S., Bahuguna, R., Khetarpal, S., Anand, A., 2014. Rising atmospheric CO2 may affect oil quality and seed yield of sunflower(Helianthus annus L.). Acta Physiol. Plant. 36, 2853-2861. Prior, S.A., Runion, G.B., Rogers, H.H., Arriaga, F.J., 2010. Elevated atmospheric carbon dioxide effects on soybean and sorghum gas exchange in conventional and notillage systems. J. Environ. Qual. 39, 596-608. Rogers, A., Gibon, Y., Stitt, M., Morgan, P.B., Bernacchi, C.J., Ort, D.R., Long, S.P., 2006. Increased C availability at elevated carbon dioxide oncentraiton improves N assimilation in a legume. Plant Cell Environ. 29, 1651-1658. Rolletschek, H., Borisjuk, L., Sánchez-García, A., Gotor, C., Romero, L.C., Martínez-Rivas, J.M., et al., 2007. Temperature-dependent endogenous oxygen concentration regulates microsomal oleate desaturase in developing sunflower seeds. J. Exp. Bot. 58, 3171-3181. Rolletschek, H., Radchuk, R., Klukas, C., Schreiber, F., Wobus, U., Borisjuk, L., 2005. Evidence of a key role for photosynthetic oxygen release in oil storage in developing soybean seeds. New Phytol. 167, 777-786. Rosenthal, D.M., Ruiz-Vera, U.M., Siebers, M.H., Gray, S.B., Bernacchi, C.J., Ort, D.R., 2014. Biochemical acclimation, stomatal limitation and precipitation patterns underlie decreases in photosynthetic stimulation of soybean (Glycine max) at elevated[CO2] and temperatures underfully open air field conditions.Plant Sci. 226, 136-146. Saha, S., Chakraborty, D., Sehgal, V.K., Pal, M., 2015. Potential impact of rising atmospheric CO2 on quality of grains in chickpea (Cicer arietinum L.). Food Chem. 187, 431-436. Sakurai, G., Iizumi, T., Nishimori, M., Yokozawa, M., 2014. How much has the increase in atmospheric CO2 directly affected past soybean production? Sci. Rep. 4, 4978. Sanz-Saez, A., Koester, R.P., Rosenthal, D.M., Montes, C.M., Ort, D.R., Ainsworth, E.A., 2017. Leaf and canopy scale drivers of genotypic variation in soybean response to elevated carbon dioxide concentration. Glob. Chang. Biol. 1-13. Shenolikar, I., 1980. Fatty-acid profile of myocardial lipid in populations consuming different dietary fats. Lipids 15, 980-982. Sun, J., Feng, Z., Leakey, A.D.B., Zhu, X., Bernacchi, C.J., Ort, D.R., 2014. Inconsistency of mesophyll conductance estimate causes the inconsistency for the estimates of maximum rate of Rubisco carboxylation among the linear, rectangular and non-rectangular hyperbola biochemical models of leaf photosynthesisda case study of CO2 enrichment and leaf aging effects in soybean. Plant Sci. 226, 49-60. Taub, D.R., Miller, B., Allen, H., 2008. Effects of elevated CO2 on the protein concentration of food crops:a meta-analysis. Glob. Chang. Biol. 14, 565-575. Thomas, J.M.G., Boote, K.J., Allen, L.H., Gallo-Meagher, M., Davis, J.M., 2003. Elevated temperature and carbon dioxide effects on soybean seed composition and transcript abundance. Crop Sci. 43, 1548-1557. Uprety, D.C., Sen, S., Dwivedi, N., 2010. Rising atmospheric carbon dioxide on grain quality in crop plants. Physiol. Mol. Biol. Plants 16, 215-227. Vigeolas, H., van Dongen, J.T., Waldeck, P., Hühn, D., Geigenberger, P., 2003. Lipid storage metabolism is limited by the prevailing low oxygen concentrations within developing seeds of oilseed rape. Plant Physiol. 133, 2048-2060. Wang, D., Heckathorn, S.A., Wang, X.Z., Philpott, S.M., 2012. A meta-analysis of plant physiological and growth responses to temperature and elevated CO2. Oecologia 169, 1-13. Ward, J.K., Samanta Roy, D., Chatterjee, I., Bone, C.R., Springer, C.J., Kelly, J.K., 2012. Identification of a major QTL that alters flowering time at elevated[CO2] in Arabidopsis thaliana. PLoS One 7, e49028. Wieser, H., Manderscheid, R., Erbs, M., Weigel, H.J., 2008. Effects of elevated atmospheric CO2 concentrations on the quantitative protein composition of wheat grain. J. Agric. Food Chem. 56, 6531-6535. Yang, W., Cahoon, R.E., Hunter, S.C., Zhang, C., Han, J., Borgschulte, T., et al., 2011. Vitamin E biosynthesis:functional characterization of the monocot homogentisate geranylgeranyl transferase. Plant J. 65, 206-217. Yu, X.M., Li, A.H., Li, W.Q., 2015. How membranes organize during seed germination:three patterns of dynamic lipid remodelling define chilling resistance and affect plastid biogenesis. Plant Cell Environ. 38, 1391-1403. Zapata, F., Danso, S.K.A., Hardarson, G., Fried, M., 1987. Time course of nitrogen fixation in field-grown soybean using nitrogen-15 methodology. Agron. J. 79, 172-176. Zhang, F.-F., Wang, Y.-L., Huang, Z.-Z., Zhu, X.-C., Zhang, F.-J., Chen, F.-D., et al., 2012. Effects of CO2 enrichment on growth and development of Impatiens hawkeri. Sci. World J. 2012, 601263. |