Plant Diversity ›› 2020, Vol. 42 ›› Issue (01): 33-43.DOI: 10.1016/j.pld.2019.10.002
Anuj Choudhary, Antul Kumar, Nirmaljit Kaur
收稿日期:
2019-04-25
修回日期:
2019-09-02
出版日期:
2020-02-25
发布日期:
2020-02-29
通讯作者:
Anuj Choudhary
Anuj Choudhary, Antul Kumar, Nirmaljit Kaur
Received:
2019-04-25
Revised:
2019-09-02
Online:
2020-02-25
Published:
2020-02-29
Contact:
Anuj Choudhary
摘要: Reactive oxygen species (ROS) are widely generated in various redox reactions in plants. In earlier studies, ROS were considered toxic byproducts of aerobic metabolism. In recent years, it has become clear that ROS act as plant signaling molecules that participate in various processes such as growth and development. Several studies have elucidated the roles of ROS from seed germination to senescence. However, there is much to discover about the diverse roles of ROS as signaling molecules and their mechanisms of sensing and response. ROS may provide possible benefits to plant physiological processes by supporting cellular proliferation in cells that maintain basal levels prior to oxidative effects. Although ROS are largely perceived as either negative by-products of aerobic metabolism or makers for plant stress, elucidating the range of functions that ROS play in growth and development still require attention.
Anuj Choudhary, Antul Kumar, Nirmaljit Kaur. ROS and oxidative burst: Roots in plant development[J]. Plant Diversity, 2020, 42(01): 33-43.
Anuj Choudhary, Antul Kumar, Nirmaljit Kaur. ROS and oxidative burst: Roots in plant development[J]. Plant Diversity, 2020, 42(01): 33-43.
Aken, O.V., Van Breusegem, F., 2015. Licensed to kill:mitochondria, chloroplasts, and cell death. Trends Plant Sci. 20, 754-766. https://doi.org/10.1016/j.tplants.2015.08.002. Arc, E., Sechet, J., Corbineau, F., Rajjou, L., Marion-Poll, A., 2013. ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Front. Plant Sci. 4, 63. Bahin, E., Bailly, C., Sotta, B., Kranner, I., Corbineau, F., Leymarie, J., 2011. Crosstalk between reactive oxygen species and hormonal signaling pathways regulates grain dormancy in barley. Plant Cell Environ. 34, 980-993. Bailly, C., 2004. Active oxygen species and antioxidants in seed biology. Seed Sci.Res. 14, 93-107. Bailly, C., El-Maarouf-Bouteau, H., Corbineau, F., 2008. From intracellular signaling networks to cell death:the dual role of reactive oxygen species in seed physiology. C. R. Biol. 331, 806-814. Basbouss-Serhal, I., Pateyron, S., Cochet, F., Leymarie, J., Bailly, C., 2017. 5' to 3' mRNA decay contributes to the regulation of Arabidopsis seed germination by dormancy. Plant Physiol. 173, 1709-1723. Beemster, G.T.S., Veylder, L.D., Vercruysse, S., West, S., Rombaut, D., Hummelen, P.V., Galichet, A., Gruissem, W., Inzé, D., Vuylsteke, M., 2005. Genome-wide analysis of gene expression profiles associated with cell cycle transitions in growing organs of Arabidopsis. Plant Physiol. 138, 734-743. Benitez-Alfonso, Y., Cilia, M., San Roman, A., Thomas, C., Maule, A., Hearn, S., Jackson, D., 2009. Control of Arabidopsis meristem development by thioredoxin-dependent regulation of intercellular transport. Proc. Natl. Acad. Sci. 106, 3615-3620. Bhattacharjee, S., 2012. The language of Reactive oxygen species signaling in plant. J. Bot., Le 2012, 1-22. Bussell, J.D., Reichelt, M., Wiszniewski, A.A., Gershenzon, J., Smith, S.M., 2014. Peroxisomal ATP-binding cassette transporter COMATOSE and the multifunctional protein abnormal INFLORESCENCE MERISTEM are required for the production of benzoylated metabolites in Arabidopsis seeds. Plant Physiol. 164, 48-54. Camejo, D., Guzmán-Cedeño, A., Moreno, A., 2016. Reactive oxygen species, essential molecules, during plant-pathogen interactions. Plant Physiol. Biochem. 103, 10-23. Cha, J.-Y., Kim, W.-Y., Kang, S.B., Kim, J.I., Baek, D., Jung, I.J., Kim, M.R., Li, N., Kim, H.-J., Nakajima, M., 2015. A novel thiol-reductase activity of Arabidopsis YUC6 confers drought tolerance independently of auxin biosynthesis. Nat. Commun. 6, 8041. Chang, C.C.C., Ślesak, I., Jordá, L., Sotnikov, A., Melzer, M., Miszalski, Z.,Mullineaux, P.M., Parker, J.E., Karpińska, B., Karpiński, S., 2009. Arabidopsis chloroplastic glutathione peroxidases play a role in cross talk between photooxidative stress and immune responses. Plant Physiol. 150, 670-683. Cheng, N.H., Liu, J.Z., Liu, X., Wu, Q., Thompson, S.M., Lin, J., Chang, J., Whitham, S.A., Park, S., Cohen, J.D., Hirschi, K.D., 2011. Arabidopsis monothiol-glutaredoxin, AtGRXS17, is critical for temperature-dependent postembryonic growth and development via modulating auxin response. J. Biol. Chem. 286, 20398-20406. Corpas, F.J., Barroso, J.B., Palma, J.M., Rodriguez-Ruiz, M., 2017. Plant peroxisomes:a nitro-oxidative cocktail. Redox Biol. 11, 535-542. Corpas, F.J., Gupta, D.K., Palma, J.M., 2015. Production sites of reactive oxygen species (ROS) in organelles from plant cells. In:React Oxyg Species Oxidative Damage W. Plants Stress Springer Cham, pp. 1-22. Cosio, C., Vuillemin, L., DeMeyer, M., Kevers, C., Penel, C., Dunand, C., 2008. An anionic classIII peroxidase from zucchini may regulate hypocotyl elongation through its auxin oxidase activity. Planta 229, 823-836. Cvetkovska, M., Alber, N.A., Vanlerberghe, G.C., 2013. The signaling role of a mitochondrial superoxide burst during stress. Plant Signal. Behav. 8, e22749. Czarnocka, W., Karpiński, S., 2018. Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radic. Biol. Med. 122, 4-20. Das, K., Roychoudhury, A., 2014. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2, 53. Diaz-Vivancos, P., Barba-Espin, G., Hernandez, J.A., 2013. Elucidating hormonal/ROS networks during seed germination:insights and perspectives. Plant Cell Rep. 32, 1491-1502. Duan, Q., Kita, D., Johnson, E.A., Aggarwal, M., Gates, L., Wu, H.M., Cheung, A.Y., 2014. Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis. Nat. Commun. 5, 3129. Dunand, C., Crevecoeur, M., Penel, C., 2007. Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development:possible interaction with peroxidases. New Phytol. 174, 332-341. Durme, M.V., Nowack, M.K., 2016. Mechanisms of developmentally controlled cell death in plants. Curr. Opin. Plant Biol. 29, 29-37. El-Maarouf-Bouteau, H., Bailly, C., 2008. Oxidative signaling in seed germination and dormancy. Plant Signal. Behav. 3, 175-182. El-Maarouf-Bouteau, H., Meimoun, P., Job, C., Job, D., Bailly, C., 2013. Role of protein and mRNA oxidation in seed dormancy and germination. Front. Plant Sci. 4, 77. Evans, M.D., Dizdaroglu, M., Cooke, M.S., 2004. Oxidative DNA damage and disease:induction, repair and significance. Mutat. Res. Rev. Mutat. Res. 567, 1-61. Finkelstein, R., Reeves, W., Ariizumi, T., Steber, C., 2008. Molecular aspects of seeddormancy. Ann. Rev. Plant Biol. 59, 387-415. https://doi.org/10.1146/annurev.arplant.59.032607.092740. Foreman, J., Demidchik, V., Bothwell, J.H., Mylona, P., Miedema, H., Torres, M.A., Linstead, P., Costa, S., Brownlee, C., Jones, J.D., Davies, J.M., Dolan, L., 2003. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422, 442-446. Foyer, C.H., Noctor, G., 2013. Redox signaling in plants. Antioxidants Redox Signal. 18, 2087-2090. Graeber, K., Linkies, A., Müller, K., Wunchova, A., Rott, A., Leubner-Metzger, G., 2010. Cross-species approaches to seed dormancy and germination:conservation and biodiversity of ABA-regulated mechanisms and the Brassicaceae DOG1 genes. Plant Mol. Biol. 73, 67-87. Halliwell, B., 2006. Reactive species and antioxidants. redox biology is a fundamental theme of aerobic life. Plant Physiol. 141, 312-322. Halliwell, B., Gutteridge, J.M.C., 1989. Free Radicals in Biology and Medicine. Clarendon Press, Oxford, pp. 450-499. Hossain, M.A., Bhattacharjee, S., Armin, S.M., Qian, P., Xin, W., Li, H.Y., Burritt, D.J., Fujita, M., Tran, L.S., 2015. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance:insights from ROS detoxification and scavenging. Front. Plant Sci. 6, 420. Hulskamp, M., 2004. Plant trichomes:a model for cell differentiation. Nat. Rev. Mol. Cell Biol. 5, 471-480. Ishibashi, Y., Koda, Y., Zheng, S.H., Yuasa, T., Iwaya-Inoue, M., 2013. Regulation of soybean seed germination through ethylene production in response to reactive oxygen species. Ann. Bot. 111, 95-102. Ishibashi, Y., Yamamoto, K., Tawaratsumida, T., Yuasa, T., Iwaya-Inoue, M., 2008. Hydrogen peroxide scavenging regulates germination ability during wheat(Triticum aestivum L.) seed maturation. Plant Signal. Behav. 3, 183-188. Ishibashi, Y., Tawaratsumida, T., Kondo, K., Kasa, S., Sakamoto, M., Aoki, N., Zheng, S.H., Yuasa, T., Iwaya-Inoue, M., 2012. Reactive oxygen species are involved in gibberellin/abscisic acid signaling in barley aleurone cells. Plant Physiol. 158, 1705-1714. Laloi, C., Apel, K., Danon, A., 2004. Reactive oxygen signalling:the latest news. Curr. Opin. Plant Biol. 7, 323-328. Lassig, R., Gutermuth, T., Bey, T.D., Konrad, K.R., Romeis, T., 2014. Pollen tube NAD(P)H oxidases act as a speed control to dampen growth rate oscillations during polarized cell growth. Plant J. 78, 94-106. Lavenus, J., Goh, T., Roberts, I., Guyomarch, S., Lucas, M., De Smet, I., Fukaki, H., Beeckman, T., Bennett, M., Laplaze, L., 2013. Lateral root development in Arabidopsis:fifty shades of auxin. Trends Plant Sci. 18, 450-458. Lee, Y., Rubio, M.C., Alassimone, J., Geldner, N., 2013. A mechanism for localized lignin deposition in the endodermis. Cell 153, 402-412. Leymarie, J., Vitkauskaite, G., Hoang, H.H., Gendreau, E., Chazoule, V., Meimoun, P., Corbineau, F., El-Maarouf-Bouteau, H., Bailly, C., 2012. Role of reactive oxygen species in the regulation of Arabidopsis seed dormancy. Plant Cell Physiol. 53, 96-106. Libik-Konieczny, M., Kozieradzka-Kiszkurno, M., Desel, C., Michalec-Warzecha, Z., Miszalski, Z., Konieczny, R., 2015. The localization of NADPH oxidase and reactive oxygen species in in vitro-cultured Mesembryanthemum crystallinum L. hypocotyls discloses their differing roles in rhizogenesis. Protoplasma 252, 477-487. Lovy-Wheeler, A., Kunkel, J.G., Allwood, E.G., Hussey, P.J., Hepler, P.K., 2006. Oscillatory increases in alkalinity anticipate growth and may regulate actin dynamics in pollen tubes of lily. Plant Cell 18, 2182-2193. Lu, D., Wang, T., Persson, S., Mueller-Roeber, B., Schippers, J.H.M., 2014. Transcriptional control of ROS homeostasis by KUODA1 regulates cell expansion during leaf development. Nat. Commun. 5, 3767. Macpherson, N., Takeda, S., Shang, Z., Dark, A., Mortimer, J.C., Brownlee, C., 2008. NADPH oxidase involvement in cellular integrity. Planta 227, 1415-1418. Mangano, S., Denita Juárez, S., Estevez, J.M., 2016. ROS regulation of polar growth in plant cells. Plant Physiol. 171, 1593-1605. Manzano, C., Pallero-Baena, M., Casimiro, I., DeRybel, B., Orman-Ligeza, B., VanIsterdael, G., Beeckman, T., Draye, X., Casero, P., Del Pozo, J.C., 2014. The emerging role of reactive oxygen species signaling during lateral root development. Plant Physiol. 165, 1105-1119. Marino, D., Dunand, C., Puppo, A., Pauly, N., 2012. A burst of plant NADPH oxidases. Trends Plant Sci. 17, 9-15. McDonald, M.B., 1999. Seed deterioration:physiology, repair and assessment. Seed Sci. Technol. 27, 177-237. Mignolet-Spruyt, L., Xu, E., Idänheimo, N., Hoeberichts, F.A., Mühlenbock, P., Brosché, M., Van Breusegem, F., Kangasjärvi, J., 2016. Spreading the news:subcellular and organellar reactive oxygen species production and signalling. J. Exp. Bot. 67, 3831-3844. Mittler, R., 2017. ROS are good. Trends Plant Sci. 22, 11-19. Monshausen, G.B., Bibikova, T.N., Messerli, M.A., Shi, C., Gilroy, S., 2007. Oscillations in extracellular pH and reactive oxygen species modulate tip growth of Arabidopsis root hairs. Proc. Natl. Acad. Sci. U.S.A. 104, 20996-21001. Monshausen, G.B., Bibikova, T.N., Weisenseel, M.H., Gilroy, S., 2009. Ca2+ regulates reactive oxygen species production and pH during mechano-sensing in Arabidopsis roots. Plant Cell 21, 2341-2356. Moriwaki, T., Miyazawa, Y., Kobayashi, A., Uchida, M., Watanabe, C., Fujii, N., Takahashi, H., 2011. Hormonal regulation of lateral root development in Arabidopsis modulated by MIZ1 and requirement of GNOM activity for MIZ1 function. Plant Physiol. 157, 1209-1220. Müller, K., Linkies, A., Vreeburg, R.A.M., Fry, S.C., Krieger-Liszkay, A., LuebnerMetzger, G., 2009. In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth. Plant Physiol. 150, 1855-1865. Murmu, J., Bush, M.J., DeLong, C., Li, S., Xu, M., Khan, M., Malcolmson, C., Fobert, P.R., Zachgo, S., Hepworth, S.R., 2010. Arabidopsis basic leucine zipper transcription factors TGA9 and TGA10 interact with floral glutaredoxins ROXY1 and ROXY2 and are redundantly required for anther development. Plant Physiol. 154, 1492-1504. Navrot, N., Rouhier, N., Gelhaye, E., Jacquot, J.-P., 2007. Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol. Plant. 129, 185-195. Noctor, G., Reichheld, J.-P., Foyer, C.H., 2018. ROS-related redox regulation and signaling in plants. Semin. Cell Dev. Biol. 80, 3-12. Oracz, K., El-Maarouf-Bouteau, H., Farrant, J.M., Copper, K., Belghazi, M., Job, C., Job, D., Corbineau, F., Bailly, C., 2007. ROS production and protein oxidation as novel mechanism of seed dormancy alleviation. Plant J. 50, 452-465. Oracz, K., Karpiński, S., 2016. Phytohormones signaling pathways and ROS involvement in seed germination. Front. Plant Sci. 7, 864. Passaia, G., Queval, G., Bai, J., Margis-Pinheiro, M., Foyer, C.H., 2014. The effects of redox controls mediated by glutathione peroxidases on root architecture in Arabidopsis thaliana. J. Exp. Bot. 65, 1403-1413. Pautler, M., Eveland, A.L., LaRue, T., Yang, F., Weeks, R., Lunde, C., Je, B.I., Meeley, R., Komatsu, M., Vollbrecht, E., Sakai, H., Jackson, D., 2015. FASCIATED EAR4 encodes a bZIP transcription factor that regulates shoot meristem size in maize. Plant Cell 27, 104-120. Petrov, V.D., Van Breusegem, F., 2012. Hydrogen peroxideea central hub for information flow in plant cells. AoB Plants 2012, ls014. Pierson, E.S., Miller, D.D., Callaham, D.A., Shipley, A.M., Rivers, B.A., Cresti, M., Hepler, P.K., 1994. Pollen tube growth is coupled to the extracellular calcium ion flux and the intracellular calcium gradient:effect of BAPTA type buffers and hypertonic media. Plant Cell 6, 1815-1828. Pospí sil, P., 2016. Production of reactive oxygen species by photosystem II as a response to light and temperature stress. Front. Plant Sci. 7, 1950. Pottosin, I., Velarde-Buendía, A.M., Bose, J., Zepeda-Jazo, I., Shabala, S., Dobrovinskaya, O., 2014. Cross-talk between reactive oxygen species and polyamines in regulation of ion transport across the plasma membrane:implications for plant adaptive responses. J. Exp. Bot. 65, 1271-1283. Rentel, M.C., Knight, M.R., 2004. Oxidative stress-induced calcium signaling in Arabidopsis. Plant Physiol. 135, 1471-1479. Robson, C.A., Vanlerberghe, G.C., 2002. Transgenic plant cells lacking mitochondrial alternative oxidase have increased susceptibility to mitochondria-dependent and independent pathways of programmed cell death. Plant Physiol. 129, 1908-1920. Ros Barceló, A., 2005. Xylem parenchyma cells deliver the H2O2 necessary for lignifications in differentiating xylem vessels. Planta 220, 747-756. Rubio-Diaz, S., Perez-Perez, J.M., Gonzalez-Bayon, R., Munoz-Viana, R., Borrega, N., Mouille, G., Hernández-Romero, D., Robles, P., Höfte, H., Ponce, M.R., Micol, J.L., 2012. Cell expansion-mediated organ growth is affected by mutations in three EXIGUA genes. PLoS One 7, e36500. Schippers, J.H.M., Foyer, C.H., Van Dongen, J.T., 2016. Redox regulation in shoot growth, SAM maintenance and flowering. Curr. Opin. Plant Biol. 29, 121-128. Sharma, P., Jha, A.B., Dubey, R.S., Pessarakli, M., 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot., Le 2012, 1-26. Singh, R., Singh, S., Parihar, P., Mishra, R.K., Tripathi, D.K., Singh, V.P., Chauhan, D., Prasad, S.M., 2016. Reactive oxygen species (ROS):beneficial companions of plants' developmental processes. Front. Plant Sci. 7, 1299. Steffens, B., Geske, T., Sauter, M., 2011. Aerenchyma formation in the rice stem and its promotion by H2O2. New Phytol. 190, 369-378. Steinhorst, L., Kudla, J., 2013. Calciumda central regulator of pollen germination and tube growth. Biochim. Biophys. Acta 1833, 1573-1581. Stern, R., Kogan, G., Jedrzejas, M.J., Soltés, L., 2007. The many ways to cleave hyaluronan. Biotechnol. Adv. 25, 537-557. Tognetti, V.B., Bielach, A., Hrtyan, M., 2017. Redox regulation at the site of primary growth:auxin, cytokinin and ROS crosstalk. Plant Cell Environ. 40, 2586-2605. Tripathi, S.K., Tuteja, N., 2007. Integrated signaling in flower senescence. Plant Signal. Behav. 2, 437-445. Tripathy, B.C., Oelmüller, R., 2012. Reactive oxygen species generation and signaling in plants. Plant Signal. Behav. 7, 1621-1633. Tsukagoshi, H., 2016. Control of root growth and development by reactive oxygen species. Curr. Opin. Plant Biol. 29, 57-63. Tsukagoshi, H., Busch, W., Benfey, P.N., 2010. Transcriptional regulationof ROS controls transition from proliferation to differentiation in the root. Cell 143, 606-616. Wang, F., Chen, Z.-H., Liu, X., Colmer, T.D., Shabala, L., Salih, A., Zhou, M., Shabala, S., 2017. Revealing the roles of GORK channels and NADPH oxidase in acclimation to hypoxia in Arabidopsis. J. Exp. Bot. 68, 3191-3204. Waszczak, C., Akter, S., Jacques, S., Huang, J., Messens, J., Van Breusegem, F., 2015. Oxidative post-translational modifications of cysteine residues in plant signal transduction. J. Exp. Bot. 66, 2923-2934. Wilkins, K.A., Bancroft, J., Bosch, M., Ings, J., Smirnoff, N., Franklin-Tong, V.E., 2011. Reactive oxygen species and nitric oxide mediate actin reorganization and programmed cell death in the self incompatibility response of Papaver. Plant Physiol. 156, 404-416. Wituszyńska, W., Karpiński, S., 2013. Programmed Cell Death as a Response to High Light, UV and Drought Stress in Plants, pp. 207-245. Xu, L., Zhao, H., Ruan, W., Deng, M., Wang, F., Peng, J., Luo, J., Chen, Z., Yi, K., 2017. ABNORMAL INFLORESCENCE MERISTEM1 functions in salicylic acid biosynthesis to maintain proper reactive oxygen species levels for root meristem activity in rice. Plant Cell 29, 560-574. Xu, R., Li, Y., 2011. Control of final organ size by mediator complex subunit 25 in Arabidopsis thaliana. Development 138, 4545-4554. Yadegari, R., Drews, G.N., 2004. Female gametophyte development. Plant Cell 16, S133-S141. Yamauchi, Y., Furutera, A., Seki, K., Toyoda, Y., Tanaka, K., Sugimoto, Y., 2008. Malondialdehyde generated from peroxidized linolenic acid causes protein modification in heat-stressed plants. Plant Physiol. Biochem. 46, 786-793. Yang, F., Bui, H.T., Pautler, M., Llaca, V., Johnston, R., Lee, B.-H., Kolbe, A., Sakai, H., Jackson, D., 2015. A maize glutaredoxin gene, Abphyl2, regulates shoot meristem size and phyllotaxy. Plant Cell 27, 121-131. Zeng, J., Dong, Z., Wu, H., Tian, Z., Zhao, Z., 2017. Redox regulation of plant stem cell fate. EMBO J. 36, 2844-2855. Zhang, L., Ren, F., Zhang, Q., Chen, Y., Wang, B., Jiang, J., 2008. The TEAD/TEF family of transcription factor Scalloped mediates Hippo signaling in organ size control. Dev. Cell 14, 377-387. |
[1] | Xin-Mao Zhou, Li-Bing Zhang. Phylogeny, character evolution, and classification of Selaginellaceae(lycophytes)[J]. Plant Diversity, 2023, 45(06): 630-684. |
[2] | Deokjoo Son, Bruce Waldman, Uhram Song. Effects of land-use types and the exotic species, Hypochaeris radicata, on plant diversity in human-transformed landscapes of the biosphere reserve, Jeju Island, Korea[J]. Plant Diversity, 2023, 45(06): 685-693. |
[3] | Shuai-Yu Zou, Chen Feng, Pu-Xin Gao, Tong-Jian Li, Tian-Jiao Jia, Hongwen Huang. Germplasm resources and genetic improvement of Akebia: A new fruit crop in China[J]. Plant Diversity, 2023, 45(06): 712-721. |
[4] | Hong Qian, Shenhua Qian. Geographic patterns of taxonomic and phylogenetic β-diversity of angiosperm genera in regional floras across the world[J]. Plant Diversity, 2023, 45(05): 491-500. |
[5] | Hai-Su Hu, Jiu-Yang Mao, Xue Wang, Yu-Ze Liang, Bei Jiang, De-Quan Zhang. Plastid phylogenomics and species discrimination in the “Chinese” clade of Roscoea (Zingiberaceae)[J]. Plant Diversity, 2023, 45(05): 523-534. |
[6] | Yan Ke, Feng-Ping Zhang, Yun-Bing Zhang, Wei Li, Qin Wang, Da Yang, Jiao-Lin Zhang, Kun-Fang Cao. Convergent relationships between flower economics and hydraulic traits across aquatic and terrestrial herbaceous plants[J]. Plant Diversity, 2023, 45(05): 601-610. |
[7] | Na Su, Richard G.J. Hodel, Xi Wang, Jun-Ru Wang, Si-Yu Xie, Chao-Xia Gui, Ling Zhang, Zhao-Yang Chang, Liang Zhao, Daniel Potter, Jun Wen. Molecular phylogeny and inflorescence evolution of Prunus (Rosaceae) based on RAD-seq and genome skimming analyses[J]. Plant Diversity, 2023, 45(04): 397-408. |
[8] | Gang Feng, Ying-Jie Xiong, Hua-Yu Wei, Yao Li, Ling-Feng Mao. Endemic medicinal plant distribution correlated with stable climate, precipitation, and cultural diversity[J]. Plant Diversity, 2023, 45(04): 479-484. |
[9] | Thant Sin Aung, Alice C. Hughes, Phyo Kay Khine, Bo Liu, Xiao-Li Shen, Ke-Ping Ma. Patterns of floristic inventory and plant collections in Myanmar[J]. Plant Diversity, 2023, 45(03): 302-308. |
[10] | Jing-Jing Cao, Jing Chen, Qing-Pei Yang, Yan-Mei Xiong, Wei-Zheng Ren, De-Liang Kong. Leaf hydraulics coordinated with leaf economics and leaf size in mangrove species along a salinity gradient[J]. Plant Diversity, 2023, 45(03): 309-314. |
[11] | Shuang Tie, Yong-Deng He, Amparo Lázaro, David W. Inouye, You-Hao Guo, Chun-Feng Yang. Floral trait variation across individual plants within a population enhances defense capability to nectar robbing[J]. Plant Diversity, 2023, 45(03): 315-325. |
[12] | Yi Jin, Hong Qian. U.PhyloMaker:An R package that can generate large phylogenetic trees for plants and animals[J]. Plant Diversity, 2023, 45(03): 347-352. |
[13] | Ya-Dong Zhou, Hong Qian, Yi Jin, Ke-Yan Xiao, Xue Yan, Qing-Feng Wang. Geographic patterns of taxonomic and phylogenetic β-diversity of aquatic angiosperms in China[J]. Plant Diversity, 2023, 45(02): 177-184. |
[14] | Irina A. Kirillova, Yuriy A. Dubrovskiy, Svetlana V. Degteva, Alexander B. Novakovskiy. Ecological and habitat ranges of orchids in the northernmost regions of their distribution areas: A case study from Ural Mountains, Russia[J]. Plant Diversity, 2023, 45(02): 211-218. |
[15] | Li-Guo Zhang, Xiao-Qian Li, Wei-Tao Jin, Yu-Juan Liu, Yao Zhao, Jun Rong, Xiao-Guo Xiang. Asymmetric migration dynamics of the tropical Asian and Australasian floras[J]. Plant Diversity, 2023, 45(01): 20-26. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||