Adler, P.B., Salguero-Gomez, R., Compagnoni, A., et al., 2014. Functional traits explain variation in plant life history strategies. Proc. Natl. Acad. Sci. U.S.A. 111, 740-745. Akram, M.A., Wang, X., Hu, W., et al., 2020. Convergent variations in the leaf traits of desert plants. Plants 9, 990. Auger, S., Shipley, B., 2012. Inter-specific and intra-specific trait variation along short environmental gradients in an old-growth temperate forest. J. Veg. Sci. 24, 419-428. Bartlett, M.K., Scoffoni, C., Ardy, R., et al., 2012b. Rapid determination of comparative drought tolerance traits: using an osmometer to predict turgor loss point. Methods Ecol. Evol. 3, 880-888. Bartlett, M.K., Scoffoni, C., Sack, L., 2012a. The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global metaanalysis. Ecol. Lett. 15, 393-405. Blomberg, S.P., Garland, T.J.R., Ives, A.R., 2003. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57, 717-745. Borchert, R., 1994. Soil and stem water storage determine phenology and distribution of tropical dry forest trees. Ecology 75, 1437-1449. Bosabalidis, A.M., Kofidis, G., 2002. Comparative effects of drought stress on leaf anatomy of two olive cultivars. Plant Sci. 163, 375-379. Cianciaruso, M.V., Silva, I.A., Batalha, M.A., et al., 2012. The influence of fire on phylogenetic and functional structure of woody savannas: moving from species to individuals. Perspect. Plant Ecol. Evol. Syst. 14, 205-216. Cochrane, A., Yates, C.J., Hoyle, G.L., et al., 2015. Will among-population variation in seed traits improve the chance of species persistence under climate change? Global Ecol. Biogeogr. 24, 12-24. Coley, P.D., Bryant, J.P., Chapin, F.S., 1985. Resource availability and plant antiherbivore defense. Science 230, 895-899. Coopman, R.E., Briceno, V.F., Corcuera, L.J., et al., 2011. Tree size and light availability increase photochemical instead of non-photochemical capacities of Nothofagus nitida trees growing in an evergreen temperate rain forest. Tree Physiol. 31, 1128-1141. Coyle, J.R., Halliday, F.W., Lopez, B.E., et al., 2014. Using trait and phylogenetic diversity to evaluate the generality of the stress-dominance hypothesis in eastern North American tree communities. Ecography 37, 814-826. Croft, H., Chen, J.M., Luo, X., et al., 2017. Leaf chlorophyll content as a proxy for leaf photosynthetic capacity. Glob. Change Biol. 23, 3513-3524. Dantas, V.L., Pausas, J.G., Batalha, M.A., et al., 2013. The role of fire in structuring trait variability in Neotropical savannas. Oecologia 171, 487-494. De Cássia-Silva, C., Cianciaruso, M.V., Maracahipes, L., et al., 2017. When the same is not the same: phenotypic variation reveals different plant ecological strategies within species occurring in distinct Neotropical savanna habitats. Plant Ecol. 218, 1221-1231. Deng, Y., Deng, X.B., Dong, J.L., et al., 2020. Detecting growth phase shifts based on leaf trait variation of a canopy dipterocarp tree species (Parashorea chinensis). Forests 11, 1145. Díaz, S., Purvis, A., Cornelissen, J.H.C., et al., 2013. Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecol. Evol. 3, 2958-2975. Fei, X.H., Jin, Y.Q., Zhang, Y.P., et al., 2017. Eddy covariance and biometric measurement show that a savanna ecosystem in Southwest China is a carbon sink. Sci. Rep. 7, 41025. Field, C.B., Mooney, H.A., 1986. The photosynthesis-nitrogen relationship in wild plants. In: Givnish, T.J. (Ed.), On the Economy of Plant Form and Function. Cambridge University Press, Cambridge, pp. 25-55. Fyllas, N.M., Michelaki, C., Galanidis, A., et al., 2020. Functional trait variation among and within species and plant functional types in mountainous mediterranean forests. Front. Plant Sci. 11 https://doi.org/10.3389/fpls.2020.00212. Gotsch, S.G., Powers, J.S., Lerdau, M.T., 2010. Leaf traits and water relations of 12 evergreen species in Costa Rican wet and dry forests: patterns of intra-specific variation across forests and seasons. Plant Ecol. 211, 133-146. Hoffmann, W.A., Franco, A.C., Moreira, M.Z., et al., 2005. Specific leaf area explains differences in leaf traits between congeneric savanna and forest trees. Funct. Ecol. 19, 932-940. Hulshof, C.M., Swenson, N.G., 2010. Variation in leaf functional trait values within and across individuals and species: an example from a Costa Rican dry forest. Funct. Ecol. 24, 217-223. Kafuti, C., Bourland, N., De Mil, T., et al., 2020. Foliar and wood traits covary along a vertical gradient within the crown of long-lived light-demanding species of the Congo basin semi-deciduous forest. Forests 11, 1-18. Keenan, T.F., Niinemets, U., 2016. Global leaf trait estimates biased due to plasticity in the shade. Nat. Plants 3, 16201. Kembel, S.W., 2009. Disentangling niche and neutral influences on community assembly: assessing the performance of community phylogenetic structure tests. Ecol. Lett. 12, 949-960. Kenzo, T., Inoue, Y., Yoshimura, M., et al., 2015. Height-related changes in leaf photosynthetic traits in diverse Bornean tropical rain forest trees. Oecologia 177, 191-202. Kleyer, M., Trinogga, J., Cebrián-Piqueras, M.A., et al., 2018. Trait correlation network analysis identifies biomass allocation traits and stem specific length as hub traits in herbaceous perennial plants. J. Ecol. 107, 829-842. Kraft, N.J., Adler, P.B., Godoy, O., et al., 2015. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592-599. Li, X.W., Walker, D., 1986. The plant geography of Yunnan Province, southwest China. J. Biogeogr. 13, 367-397. Losos, J.B., 2008. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol. Lett. 11, 995-1007. Lüttge, U., 2008. Physiological Ecology of Tropical Plants. Springer, Berlin, Germany. Marks, C., Lechowicz, M., 2006. Alternative designs and the evolution of functional diversity. Am. Nat. 167, 55-66. Messier, J., McGill, B.J., Enquist, B.J., et al., 2017. Trait variation and integration across scales: is the leaf economic spectrum present at local scales? Ecography 40, 685-697. Messier, J., McGill, B.J., Lechowicz, M.J., 2010. How do traits vary across ecological scales? A case for trait-based ecology. Ecol. Lett. 13, 838-848. Niinemets, Ü., 2001. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology 82, 453-469. Paradis, E., Claude, J., Strimmer, K., 2004. APE: analyses of phylogenetics ang evolution in R language. Bioinformatics 20, 289-290. Parker, G.G., 1995. Structure and microclimate of forest canopies. In:Lowman, M.E., Nadkarni, N.M. (Eds.), Forest Canopies. Academic Press, San Diego, pp. 73-106. Pérez-Harguindeguy, N., Díaz, S., Garnier, E., et al., 2013. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 64, 715-716. Poorter, H., Garnier, E., 1999. Ecological significance of inherent variation in relative growth rate and its components. In: Pugnaire, F.I., Valladares, F.(Eds.), Handbook of Functional Plant Ecology. Marcel Dekker, New York, pp. 81-120. Powers, J.S., Tiffin, P., 2010. Plant functional type classifications in tropical dry forests in Costa Rica: leaf habit versus taxonomic approaches. Funct. Ecol. 24, 927-936. Pringle, E.G., Adams, R.I., Broadbent, E., et al., 2011. Distinct leaf-trait syndromes of evergreen and deciduous trees in a seasonally dry tropical forest. Biotropica 43, 299-308. Scalon, M.C., Haridasan, M., Franco, A.C., 2017. Influence of long-term nutrient manipulation on specific leaf area and leaf nutrient concentrations in savanna woody species of contrasting leaf phenologies. Plant Soil 421, 233-244. Siefert, A., Violle, C., Chalmandrier, L., et al., 2015. A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecol. Lett. 18, 1406-1419. Silvertown, J., Mcconway, K., Gowing, D., et al., 2005. Absence of phylogenetic signal in the niche structure of meadow plant communities. Proc. Roy. Soc. Lond. B. 273, 39-44. Sultan, S.E., 2000. Phenotypic plasticity for plant development, function and life history. Trends Plant Sci. 5, 1360-1385. Swenson, N.G., 2013. The assembly of tropical tree communities-the advances and shortcomings of phylogenetic and functional trait analyses. Ecography 36, 264-276. Umaña, M.N., Zhang, C.C., Cao, M., et al., 2015. Commonness, rarity, and intraspeci fic variation in traits and performance in tropical tree seedlings. Ecol. Lett. 18, 1329-1337. Valladares, F., Gianoli, E., Gómez, J.M., 2007. Ecological limits to plant phenotypic plasticity. New Phytol. 176, 749-763. Violle, C., Enquist, B.J., McGill, B.J., et al., 2012. The return of the variance: intraspecific variability in community ecology. Trends Ecol. Evol. 27, 244-252. Violle, C., Navas, M.L., Vile, D., et al., 2007. Let the concept of trait be functional. Oikos 116, 882-892. Vos, J., Bom, M., 1993. Hand-held chlorophyll meter: a promising tool to assess the nitrogen status of potato foliage. Potato Res. 36, 301-308. Walter, H., 1985. Vegetation of the Earth, 3rd ed. Springer-Verlag, Berlin, Germany. Webb, C.O., Ackerly, D.D., McPeek, M.A., et al., 2002. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475-505. Williams, K., Field, C.B., Mooney, H.A., 1989. Relationships among leaf construction cost, leaf longevity, and light environment in rain-forest plants of the genus piper. Am. Nat. 133, 198-211. Wright, I.J., Dong, N., Maire, V., et al., 2017. Global climatic drivers of leaf size. Science 357, 917-921. Wu, Z.Y., Zhu, Y.C., Jiang, H.Q., 1987. Vegetation of Yunnan. Science Press, Beijing. Yang, J., Ci, X.Q., Lu, M.M., et al., 2014. Functional traits of tree species co-vary with environmental niches in two large forest dynamics plots. J. Plant Ecol. 7, 115-125. Zanne, A.E., Tank, D.C., Cornwell, W.K., et al., 2014. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89-92. Zhang, J.L., Poorter, L., Hao, G.Y., et al., 2012. Photosynthetic thermotolerance of woody savanna species in China is correlated with leaf life span. Ann. Bot.110, 1027-1033. Zhang, S.B., Zhang, J.L., Cao, K.F., 2016. Differences in the photosynthetic efficiency and photorespiration of co-occurring Euphorbiaceae liana and tree in a Chinese savanna. Photosynthetica 54, 438-445. Zhu, H., Tan, Y.H., Yan, L.C., et al., 2020. Flora of the savanna-like vegetation in hot dry valleys, southwestern China with implications to their origin and evolution. Bot. Rev. 86, 281-297. Zhu, J.J., Zhang, J.L., Liu, H.C., et al., 2009. Photosynthesis, non-photochemical pathways and activities of antioxidant enzymes in a resilient evergreen oak under different climatic conditions from a valley-savanna in Southwest China. Physiol. Plantarum 135, 62-72. Zhu, S.D., Chen, Y.J., Ye, Q., et al., 2018. Leaf turgor loss point is correlated with drought tolerance and leaf carbon economics traits. Tree Physiol. 38, 658-663. |