Plant Diversity ›› 2022, Vol. 44 ›› Issue (03): 231-242.DOI: 10.1016/j.pld.2021.09.001
• Articles • 下一篇
Ya-Zhou Zhanga,b, Li-Shen Qiana,b,c, Xu-Fang Chena,b, Lu Suna,b, Hang Suna, Jian-Guo Chena
收稿日期:
2021-05-13
修回日期:
2021-08-25
出版日期:
2022-05-25
发布日期:
2022-06-21
通讯作者:
Hang Sun,E-mail:sunhang@mail.kib.ac.cn;Jian-Guo Chen,E-mail:chenjianguo@mail.kib.ac.cn
基金资助:
Ya-Zhou Zhanga,b, Li-Shen Qiana,b,c, Xu-Fang Chena,b, Lu Suna,b, Hang Suna, Jian-Guo Chena
Received:
2021-05-13
Revised:
2021-08-25
Online:
2022-05-25
Published:
2022-06-21
Contact:
Hang Sun,E-mail:sunhang@mail.kib.ac.cn;Jian-Guo Chen,E-mail:chenjianguo@mail.kib.ac.cn
Supported by:
摘要: The Qinghai-Tibet Plateau (QTP) is an important cushion plant hotspot. However, the distribution of cushion plants on the QTP is unknown, as are the factors that drive cushion plant distribution, limiting our understanding of the evolution of cushion species in the region. In this study, we assessed spatial patterns of total cushion plant diversity (including taxonomic and phylogenetic) over the entire QTP and compared patterns of diversity of cushion plants with different typologies (i.e., compact vs. loose). We also examined how these patterns were related to climatic features. Our results indicate that the southern QTP hosts the highest total cushion plant richness, especially in the south-central Hengduan Mountains subregion. The total number of cushion species declines from south to north and from southeast to northwest. Compact cushion plants exhibit similar patterns as the total cushion plant richness, whereas loose cushion plants show random distribution. Cushion plant phylogenetic diversity showed a similar pattern as that of the total cushion plant richness. In addition, cushion plant phylogenetic community structure was clustered in the eastern and southwestern QTP, whereas random or overdispersed in other areas. Climatic features represented by annual energy and water trends, seasonality and extreme environmental factors, had significant effects on cushion plant diversity patterns but limited effects on the phylogenetic community structure, suggesting that climatic features indeed promote the formation of cushion plants. Because cushion plants play vital roles in alpine ecosystems, our findings not only promote our understanding of the evolution and formation of alpine cushion plant diversity but also provide an indispensable foundation for future studies on cushion plant functions and thus alpine ecosystem sustainability in the entire QTP region.
Ya-Zhou Zhang, Li-Shen Qian, Xu-Fang Chen, Lu Sun, Hang Sun, Jian-Guo Chen. Diversity patterns of cushion plants on the Qinghai-Tibet Plateau: A basic study for future conservation efforts on alpine ecosystems[J]. Plant Diversity, 2022, 44(03): 231-242.
Ya-Zhou Zhang, Li-Shen Qian, Xu-Fang Chen, Lu Sun, Hang Sun, Jian-Guo Chen. Diversity patterns of cushion plants on the Qinghai-Tibet Plateau: A basic study for future conservation efforts on alpine ecosystems[J]. Plant Diversity, 2022, 44(03): 231-242.
Aldana, A.M., Carlucci, M.B., Fine, P.V.A., et al., 2017. Environmental filtering of eudicot lineages underlies phylogenetic clustering in tropical South American flooded forests. Oecologia 183(2), 327-335, https://doi.org/10.1007/s00442-016-3734-y An, Z., Kutzbach, J., Prell, W., et al., 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since late miocene times. Nature 411, 62-66, https://doi.org/10.1038/35075035 Anthelme, F., Cavieres, L.A., Dangles, O., 2014. Facilitation among plants in alpine environments in the face of climate change. Front. Plant Sci. 5, 387, https://doi.org/10.3389/fpls.2014.00387 Arroyo, K.M., Cavieres, L., Penaloza, A., et al., 2003. Positive association between the cushion plant Azorella monantha (Apiaceae) and alpine plant species in the Chilean Patagonian Andes. Plant Ecol. 169, 121-129, https://doi.org/10.1023/A:1026281405115 Aubert, S., Boucher, F., Lavergne, S., et al., 2014. 1914-2014: a revised worldwide catalogue of cushion plants 100 years after Hauri and Schroter. Alpine Bot. 124(1), 59-70, https://doi.org/10.1007/s00035-014-0127-x Badano, E.I., Cavieres, L.A., 2006. Ecosystem engineering across ecosystems: do engineer species sharing common features have generalized or idiosyncratic effects on species diversity? J. Biogeogr. 33(2), 304-313, https://doi.org/10.1111/j.1365-2699.2005.01384.x Badano, E., Jones, C.G., Cavieres, L.A., et al., 2006. Assessing impacts of ecosystem engineers on community organization: a general approach illustrated by effects of a high-Andean cushion plant. Oikos 115(2), 369-385, https://doi.org/10.1111/j.2006.0030-1299.15132.x Barton, K., 2019. MuMIn: multi-model inference. R package version 1.43.6. https://CRAN.R-project.org/package=MuMIn Bivand, R.S., Wong, D.W.S., 2018. Comparing implementations of global and local indicators of spatial association. Test 27(3), 716-748, https://doi.org/10.1007/s11749-018-0599-x Boucher, F.C., Lavergne, S., Basile, M., et al., 2016. Evolution and biogeography of the cushion life form in angiosperms. Perspect. Plant Ecol. Evol. Systemat. 20, 22-31, https://doi.org/10.1016/j.ppees.2016.03.002 Butterfield, B.J., Cavieres, L.A., Callaway, R.M., et al., 2013. Alpine cushion plants inhibit the loss of phylogenetic diversity in severe environments. Ecol. Lett. 16(4), 478-486, https://doi.org/10.1111/ele.12070 Cavieres, L.A., Brooker, R.W., Butterfield, B.J., et al., 2014. Facilitative plant interactions and climate simultaneously drive alpine plant diversity. Ecol. Lett. 17, 193-202, https://doi.org/10.1111/ele.12217 Cavieres, L.A., Hernandez-Fuentes, C., Sierra-Almeida, A., et al., 2016. Facilitation among plants as an insurance policy for diversity in Alpine communities. Funct. Ecol. 30(1), 52-59, https://doi.org/10.1111/1365-2435.12545 Cavieres, L.A., Quiroz, C.L., Molina-Montenegro, M.A., et al., 2005. Nurse effect of the native cushion plant Azorella monantha on the invasive non-native Taraxacum officinale in the high-Andes of central Chile. Perspect. Plant Ecol. Evol. Systemat. 7(3), 217-226, https://doi.org/https://doi.org/10.1016/j.ppees.2005.09.002 Cavieres, L.A., Badano, E.I., Sierra-Almeida, A., et al., 2007. Microclimatic modifications of cushion plants and their consequences for seedling survival of native and non-native herbaceous species in the high Andes of central Chile. Arctic Antarct. Alpine Res. 39(2), 229-236, https://doi.org/10.1657/1523-0430(2007)39[229:MMOCPA]2.0.CO;2 Chen, J.G., He, X.F., Wang, S.W., et al., 2019. Cushion and shrub ecosystem engineers contribute differently to diversity and functions in alpine ecosystems. J. Veg. Sci. 30(2), 362-374, https://doi.org/10.1111/jvs.12725 Chen, J.G., Schob, C., Zhou, Z., et al., 2015a. Cushion plants can have a positive effect on diversity at high elevations in the Himalayan Hengduan Mountains. J. Veg. Sci. 26(4), 768-777, https://doi.org/10.1111/jvs.12275 Chen, J.G., Yang, Y., Stocklin, J., et al., 2015b. Soil nutrient availability determines the facilitative effects of cushion plants on other plant species at high elevations in the south-eastern Himalayas. Plant Ecol. Divers. 8(2), 199-210, https://doi.org/10.1080/17550874.2013.872206 Chen, J.G., Yang, Y., Wang, S.W., et al., 2020. Recruitment of the high elevation cushion plant Arenaria polytrichoides is limited by competition, thus threatened by currently established vegetation. J. Systemat. Evol. 58(1), 59-68, https://doi.org/10.1111/jse.12481 Chen, J.G., Zhang, Y.Z., Zhang, H.R., et al., 2021. The positive effects of the alpine cushion plant Arenaria polytrichoides on insect dynamics are determined by both physical and biotic factors. Sci. Total Environ. 762, 143091. https://doi.org/10.1016/j.scitotenv.2020.143091 Chen, W., Zhao, S., Ye, Q., et al., 2017. Patterns and Dynamics of Frigid Landforms in the Tibetan Plateau. Beijing: Science Press Cranston, B.H., Monks, A., Whigham, P.A., et al., 2015. Variation and response to experimental warming in a New Zealand cushion plant species. Austral Ecol. 40(6), 642-650, https://doi.org/10.1111/aec.12231 Dolezal, J., Dvorsky, M., Kopecky, M., et al., 2019. Functionally distinct assembly of vascular plants colonizing alpine cushions suggests their vulnerability to climate change. Ann. Bot. 123(4), 569-578, https://doi.org/10.1093/aob/mcy207 Drummond, A.J., Rambaut, A., 2007. BEAST: bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7(1), 214-214 Dullinger, S., Gattringer, A., Thuiller, W., et al., 2012. Extinction debt of high-mountain plants under twenty-first-century climate change. Nat. Clim. Change 2(8), 619-622, https://doi.org/10.1038/nclimate1514 Elsen, P.R., Tingley, M.W., 2015. Global mountain topography and the fate of montane species under climate change. Nat. Clim. Change 5(8), 772-776, https://doi.org/10.1038/nclimate2656 Feng, G., Mi, X.C., Boecher, P.K., et al., 2014. Relative roles of local disturbance, current climate and paleoclimate in determining phylogenetic and functional diversity in Chinese forests. Biogeosciences 11(5), 1361-1370, https://doi.org/10.5194/bg-11-1361-2014 Forest, F., Grenyer, R., Rouget, M., et al., 2007. Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445(7129), 757-760, https://doi.org/10.1038/nature05587 Fortuna, M.A., Bascompte, J., 2006. Habitat loss and the structure of plant-animal mutualistic networks. Ecol. Lett. 9(3), 281-286, https://doi.org/10.1111/j.1461-0248.2005.00868.x Gavini, S.S., Ezcurra, C., Aizen, M.A., 2020. Patch-level facilitation fosters high-Andean plant diversity at regional scales. J. Veg. Sci. 31, 1135-1145, https://doi.org/10.1111/jvs.12922 Graves, G., Gotelli, N., 1993. Assembly of avian mixed-species flocks in Amazonia. Proc. Natl. Acad. Sci. Unit. States Am. 90, 1388-1391 Hijmans, R.J., Cameron, S.E., Parra, J.L., et al., 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25(15), 1965-1978, https://doi.org/10.1002/joc.1276 Huang, R.F., Wang, W.Y., 1991. The flora and community succession of cushion plant in Qinghai-Xizang Plateau. Acta Biologica Plateau Sinica 15, 15-26 Huang, R.F., 1994. The cushion plant in the Hoh Xil area of Qinghai. Acta Bot. Sin. 36, 130-137 Kadereit, J.W., Griebeler, E.M., Comes, H.P., 2004. Quaternary diversification in European alpine plants: pattern and process. Philos. Trans. R. Soc. B. 359, 265-274, https://doi.org/10.1098/rstb.2003.1389 Keck, F., Rimet, F., Bouchez, A., et al., 2016. phylosignal: an R package to measure, test, and explore the phylogenetic signal. Ecol. Evol. 6(9), 2774-2780, https://doi.org/10.1002/ece3.2051 Kikvidze, Z., Brooker, R.W., Butterfield, B.J., et al., 2015. The effects of foundation species on community assembly: a global study on alpine cushion plant communities. Ecology 96(8), 2064-2069, https://doi.org/10.1890/14-2443.1 Kluge, J., Kessler, M., 2011. Phylogenetic diversity, trait diversity and niches: species assembly of ferns along a tropical elevational gradient. J. Biogeogr. 38(2), 394-405, https://doi.org/10.1111/j.1365-2699.2010.02433.x Korner, C., 2003. Alpine Plant Life. Berlin: Springer Laffan, S., Lubarsky, E., Rosauer, D., 2010. Biodiverse: a tool for the spatial analysis of biological and other diversity. Ecography 33, 643-647, https://doi.org/10.1111/j.1600-0587.2010.06237.x Lenoir, J.C., Marquet, P., Ruffray, P., et al., 2008. A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768-1771, https://doi.org/10.1126/science.1156831 Li, B.S., Wang, J.T., Li, S.Y., 1987. The floristic features and geographic distribution of the cushion plant in Xizang. Mt. Res. 5, 14-20 Li, B.S., Zhang, J.W., Wang, J.T., et al., 1985. The alpine cushion vegetation of Xizang. Acta Bot. Sin. 27, 311-317 Li, X.H., Zhu, X.X., Niu, Y., et al., 2014. Phylogenetic clustering and overdispersion for alpine plants along elevational gradient in the Hengduan Mountains Region, southwest China. J. Systemat. Evol. 52(3), 280-288, https://doi.org/10.1111/jse.12027 Liang, Q., Xu, X., Mao, K., et al., 2018. Shifts in plant distributions in response to climate warming in a biodiversity hotspot, the Hengduan Mountains. J. Biogeogr. 00, 1-11, https://doi.org/https://doi.org/10.1111/jbi.13229 Liczner, A.R., Lortie, C.J., 2014. A global meta-analytic contrast of cushion-plant effects on plants and on arthropods. PeerJ 2:e265, https://doi.org/10.7717/peerj.265 Linder H.P., Rabosky, D.L., Antonelli, A., et al., 2014. Disentangling the influence of climatic and geological changes on species radiations. J. Biogeogr. 41, 1313-1325, https://doi.org/10.1111/jbi.12312 Liu, H., Ye, Q., 2020. Climatic-niche evolution follows similar rules in plants and animals. Nat. Ecol. Evol. 4, 1-11, https://doi.org/10.1038/s41559-020-1158-x Liu, M., Che, Y., Jiao, J., et al., 2019. Exploring the community phylogenetic structure along the slope aspect of subalpine meadows in the eastern Qinghai-Tibetan Plateau, China. Ecol. Evol. 9(9), 5270-5280, https://doi.org/10.1002/ece3.5117 Liu, X.D., Chen, B.D., 2000. Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol. 20(14), 1729-1742, https://doi.org/10.1002/1097-0088(20001130)20:143.0.CO;2-Y Liu, X.J., 2014. reportStudies on the Ecosystem Engineering Effect of Cushion Plants in Alpine Cold Desert at the Northern Margin of Tibetan Plateau. Ph.D. thesis, Gansu Agriculture University Losapio, G., Fortuna, M.A., Bascompte, J., et al., 2019. Plant interactions shape pollination networks via nonadditive effects. Ecology 100(3), e02619, https://doi.org/10.1002/ecy.2619 Losapio, G., Schob, C., 2017. Resistance of plant-plant networks to biodiversity loss and secondary extinctions following simulated environmental changes. Funct. Ecol. 31(5), 1145-1152, https://doi.org/10.1111/1365-2435.12839 Memmott, J., Waser, N.M., Price, M.V., 2004. Tolerance of pollination networks to species extinctions. P. Roy. Soc. B-Biol. Sci. 271(1557), 2605-2611, https://doi.org/10.1098/rspb.2004.2909 Molenda, O., Reid, A., Lortie, C.J., 2012. The alpine cushion plant Silene acaulis as foundation species: a bug's-eye view to facilitation and microclimate. PloS One 7(5), e37223-e37223, https://doi.org/10.1371/journal.pone.0037223 Molina-Montenegro, M., Badano, E., Cavieres, L., 2006. Cushion plants as microclimatic shelters for two ladybird beetles species in alpine zone of central Chile. Arctic Antarct. Alpine Res. 38, 224-227, https://doi.org/10.1657/1523-0430(2006)38[224:CPAMSF]2.0.CO;2 Muellner-Riehl, A.N., 2019. Mountains as evolutionary arenas: patterns, emerging approaches, paradigm shifts, and their implications for plant phylogeographic research in the Tibeto-Himalayan region. Front. Plant Sci. 10: 195, https://doi.org/10.3389/fpls.2019.00195 Neuner, G., Buchner, O., Braun, V., 2000. Short-term changes in heat tolerance in the alpine cushion plant Silene acaulis ssp. excapa [All.] J. Braun at different altitudes. Plant Biol. 2(6), 677-683, https://doi.org/10.1055/s-2000-16635 Oksanen, J., Blanchet, F.G., Kindt, R., et al., 2015. Vegan: community ecology package. https://CRAN.R-project.org/package=vegan Qin, J., Yang, K., Liang, S., et al., 2009. The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Climatic Change 97(1), 321, https://doi.org/10.1007/s10584-009-9733-9 R Core Team, 2018. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria Raven, P., Wackernagel, M., 2020. Maintaining biodiversity will define our long-term success. Plant Divers. 42(4), 211-220, https://doi.org/https://doi.org/10.1016/j.pld.2020.06.002 Reid, A.M., Lortie, C.J., 2012. Cushion plants are foundation species with positive effects extending to higher trophic levels. Ecosphere 3(11), 96, https://doi.org/10.1890/es12-00106.1 Shrestha, N., Su, X., Xu, X.,et al., 2017. The drivers of high Rhododendron diversity in south-west China: does seasonality matter? J. Biogeogr. 45(2):438-447, https://doi.org/10.1111/jbi.13136 Spicer, R.A., Farnsworth, A., Su, T., 2020. Cenozoic topography, monsoons and biodiversity conservation within the Tibetan Region: an evolving story. Plant Divers. 42, 229-254 Sun, H., 2002a. Evolution of arctic-tertiary flora in Himalayan-Hengduan mountains. Acta Bot. Yunnanica 24, 671-688 Sun, H., 2002b. Tethys retreat and Himalayas-Hengduanshan Mountains uplift and their significance on the origin and development of the Sino-Himalayan elements and alpine flora. Acta Bot. Yunnanica 24, 273-288 Swenson, N.G., Stegen, J.C., Davies, S.J., et al., 2012. Temporal turnover in the composition of tropical tree communities: functional determinism and phylogenetic stochasticity. Ecology 93(3), 490-499, https://doi.org/10.1890/11-1180.1 The comprehensive scientific expedition to the Qinghai-Xizang plateau, C.A.S., 1983. Geomorphology of Xizang (Tibet). Beijing: Science press Thornhill, A.H., Baldwin, B.G., Freyman, W.A., et al., 2017. Spatial phylogenetics of the native California flora. BMC Biol. 15(1), 96, https://doi.org/10.1186/s12915-017-0435-x Thornhill, A.H., Mishler, B.D., Knerr, N.J., et al., 2016. Continental-scale spatial phylogenetics of Australian angiosperms provides insights into ecology, evolution and conservation. J. Biogeogr. 43(11), 2085-2098, https://doi.org/10.1111/jbi.12797 Wallis, G.P., Waters, J.M., Upton, P., et al. (2016) Transverse alpine speciation driven by glaciation. Trends Ecol. Evol. 31(12), 916-926, https://doi.org/10.1016/j.tree.2016.08.009 Webb, C.O., 2000. Exploring the Phylogenetic structure of ecological communities: an example for rain forest trees. Am. Nat. 156(2), 145-155, https://doi.org/10.1086/303378 Webb, C.O., Ackerly, D.D., McPeek, M.A., et al., 2002. Phylogenies and community ccology. Annu. Rev. Ecol. Systemat. 33(1), 475-505, https://doi.org/10.1146/annurev.ecolsys.33.010802.150448 Wen, J., Zhang, J.Q., Nie, Z.L., et al., 2014. Evolutionary diversifications of plants on the Qinghai-Tibetan plateau. Front. Genet. 5, 4, https://doi.org/10.3389/fgene.2014.00004 Wu, S.G., Yang, Y.P., Fei, Y., 1995. On the flora of the alpine region in the Qinghai-Xizang (Tibet) plateau. Acta Bot. Yunnanica 17, 233-250 Wu, Z.Y., 1988. Hengduan Mountain flora and her significance. J. Jpn. Bot. 63, 297-311 Xing, Y., Ree, R.H., 2017. Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proc. Natl. Acad. Sci. Unit. States Am. 114(17), E3444-E3451, https://doi.org/10.1073/pnas.1616063114 Xu, L.S., Herrando-Moraira, S., Susanna, A., et al., 2019. Phylogeny, origin and dispersal of Saussurea (Asteraceae) based on chloroplast genome data. Mol. Phylogenet. Evol. 141, 106613, https://doi.org/10.1016/j.ympev.2019.106613 Xu, X., Wang, Z., Rahbek, C., et al., 2013. Evolutionary history influences the effects of water-energy dynamics on oak diversity in Asia. J. Biogeogr. 40(11), 2146-2155, https://doi.org/10.1111/jbi.12149 Yang, Y., Chen, J.G., Schob, C., et al., 2017. Size-mediated interaction between a cushion species and other non-cushion species at high elevations of the Hengduan Mountains, SW China. Front. Plant Sci. 8, 465, https://doi.org/10.3389/fpls.2017.00465 Yang, Y., Niu, Y., Cavieres, L.A., et al., 2010. Positive associations between the cushion plant Arenaria polytrichoides (Caryophyllaceae) and other alpine plant species increase with altitude in the Sino-Himalayas. J. Veg. Sci. 21(6), 1048-1057, https://doi.org/10.1111/j.1654-1103.2010.01215.x Yu, F., Skidmore, A.K., Wang, T., et al., 2017. Rhododendron diversity patterns and priority conservation areas in China. Divers. Distrib. 23(10), 1143-1156 Yu, H., Deane, D.C., Sui, X., et al., 2019. Testing multiple hypotheses for the high endemic plant diversity of the Tibetan Plateau. Global Ecol. Biogeogr. 28(2), 131-144, https://doi.org/10.1111/geb.12827 Zhang, D., Ye, J., Sun, H., 2016. Quantitative approaches to identify floristic units and centres of species endemism in the Qinghai-Tibetan Plateau, south-western China. J. Biogeogr. 43(12), 2465-2476, https://doi.org/10.1111/jbi.12819 Zhang, M.G., Slik, J.W.F., Ma, K.P., 2017. Priority areas for the conservation of perennial plants in China. Biol. Conserv. 210, 56-63, https://doi.org/10.1016/j.biocon.2016.06.007 Zhang, Y., Chen, J., Sun H., 2021. Alpine speciation and morphological innovations: revelations from a species-rich genus in the Northern Hemisphere. Aob Plants (online), https://doi.org/10.1093/aobpla/plab018/6226922 Zhang, Y., Qian, L., Spalink, D., et al., 2020. Spatial phylogenetics of two topographic extremes of the Hengduan Mountains in southwestern China and its implications for biodiversity conservation. Plant Diversity (in press), https://doi.org/10.1016/j.pld.2020.09.001 Zhang, Y., Rong, T., Xian-Han, H., et al., 2019. Saussurea balangshanensis sp. nov. (Asteraceae), from the Hengduan mountains region, SW China. Nord. J. Bot. 37, https://doi.org/10.1111/njb.02078 Zu, K., Luo, A., Shrestha, N., et al., 2019. Altitudinal biodiversity patterns of seed plants along Gongga Mountain in the southeastern Qinghai-Tibetan Plateau. Ecol. Evol. 9(17), 9586-9596, https://doi.org/10.1002/ece3.5483 |
[1] | Hong Qian, Jian Zhang, Meichen Jiang. Global patterns of taxonomic and phylogenetic diversity of flowering plants:Biodiversity hotspots and coldspots[J]. Plant Diversity, 2023, 45(03): 265-271. |
[2] | Han-Yang Lin, Miao Sun, Ya-Jun Hao, Daijiang Li, Matthew A. Gitzendanner, Cheng-Xin Fu, Douglas E. Soltis, Pamela S. Soltis, Yun-Peng Zhao. Phylogenetic diversity of eastern Asia-eastern North America disjunct plants is mainly associated with divergence time[J]. Plant Diversity, 2023, 45(01): 27-35. |
[3] | Ting-Shen Han, Zheng-Yan Hu, Zhi-Qiang Du, Quan-Jing Zheng, Jia Liu, Thomas Mitchell-Olds, Yao-Wu Xing. Adaptive responses drive the success of polyploid yellowcresses (Rorippa, Brassicaceae) in the Hengduan Mountains, a temperate biodiversity hotspot[J]. Plant Diversity, 2022, 44(05): 455-467. |
[4] | Li-Shen Qian, Hong-Hua Shi, Xiao-Kun Ou, Hang Sun. Elevational patterns of functional diversity and trait of Delphinium (Ranunculaceae) in Hengduan Mountains, China[J]. Plant Diversity, 2022, 44(01): 20-29. |
[5] | Hong Qian, Yi Jin. Are phylogenies resolved at the genus level appropriate for studies on phylogenetic structure of species assemblages?[J]. Plant Diversity, 2021, 43(04): 255-263. |
[6] | Ran Meng, Ying Meng, Yong-Ping Yang, Ze-Long Nie. Phylogeny and biogeography of Maianthemum (Asparagaceae: Nolinoideae) revisited with emphasis on its divergence pattern in SW China[J]. Plant Diversity, 2021, 43(02): 93-101. |
[7] | Ya-Ping Chen, Cun-Zhong Huang, Yue Zhao, Chun-Lei Xiang. Molecular and morphological evidence for a new species of Isodon (Lamiaceae) from southern China[J]. Plant Diversity, 2021, 43(01): 54-62. |
[8] | Yongqian Gao, Jinxuan Zheng, Xiangqun Lin, Fan Du. Distribution patterns of clonal plants in the subnival belt of the Hengduan Mountains, SW China[J]. Plant Diversity, 2020, 42(05): 386-392. |
[9] | Robert A. Spicer, Alexander Farnsworth, Tao Su. Cenozoic topography, monsoons and biodiversity conservation within the Tibetan Region: An evolving story[J]. Plant Diversity, 2020, 42(04): 229-254. |
[10] | Xie He, Kevin S. Burgess, Lian-Ming Gao, De-Zhu Li. Distributional responses to climate change for alpine species of Cyananthus and Primula endemic to the Himalaya-Hengduan Mountains[J]. Plant Diversity, 2019, 41(01): 26-32. |
[11] | Jian-Ling Guo, Wen-Juan Cao, Zhi-Min Li, Yong-Hong Zhang, Sergei Volis. Conservation implications of population genetic structure in a threatened orchid Cypripedium tibeticum[J]. Plant Diversity, 2019, 41(01): 13-18. |
[12] | Wenguang Sun, Xiangguang Ma, Jianwen Zhang, Fuming Su, Yonghong Zhang, Zhimin Li. Karyotypes of nineteen species of Asteraceae in the Hengduan Mountains and adjacent regions[J]. Plant Diversity, 2017, 39(04): 194-201. |
[13] | Frank Hauenschild, Adrien Favre, Jan Schnitzler, Ingo Michalak, Martin Freiberg, Alexandra N. Muellner-Riehl. Spatio-temporal evolution of Allium L. in the Qinghai-Tibet-Plateau region:Immigration and in situ radiation[J]. Plant Diversity, 2017, 39(04): 167-179. |
[14] | Xinhui Li, Hang Sun. Phylogenetic pattern of alpine plants along latitude and longitude in Hengduan Mountains Region[J]. Plant Diversity, 2017, 39(01): 37-43. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||