Plant Diversity ›› 2022, Vol. 44 ›› Issue (06): 519-529.DOI: 10.1016/j.pld.2022.06.002
• Research paper • 下一篇
Yan-Ling Xua, Hao-Hua Shena, Xin-Yu Dub, Lu Lua
收稿日期:
2022-04-12
修回日期:
2022-06-01
出版日期:
2022-11-25
发布日期:
2022-12-13
通讯作者:
Xin-Yu Du,E-mail:duxinyu@mail.kib.ac.cn;Lu Lu,E-mail:lulukmu@163.com
基金资助:
Yan-Ling Xua, Hao-Hua Shena, Xin-Yu Dub, Lu Lua
Received:
2022-04-12
Revised:
2022-06-01
Online:
2022-11-25
Published:
2022-12-13
Contact:
Xin-Yu Du,E-mail:duxinyu@mail.kib.ac.cn;Lu Lu,E-mail:lulukmu@163.com
Supported by:
摘要: Wintergreen oil is a folk medicine widely used in foods, pesticides, cosmetics and drugs. In China, nine out of 47 species within Gaultheria (Ericaceae) are traditionally used as Chinese medicinal wintergreens; however, phylogenetic approaches currently used to discriminating these species remain unsatisfactory. In this study, we sequenced and characterized plastomes from nine Chinese wintergreen species and identified candidate DNA barcoding regions for Gaultheria. Each Gaultheria plastome contained 110 unique genes (76 protein-coding, 30 tRNA, and four rRNA genes). Duplication of trnfM, rps14, and rpl23 genes were detected, while all plastomes lacked ycf1 and ycf2 genes. Gaultheria plastomes shared substantially contracted SSC regions that contained only the ndhF gene. Moreover, plastomes of Gaultheria leucocarpa var. yunnanensis contained an inversion in the LSC region and an IR expansion to cover the ndhF gene. Multiple rearrangement events apparently occurred between the Gaultheria plastomes and those from several previously reported families in Ericales. Our phylogenetic reconstruction using 42 plastomes revealed well-supported relationships within all nine Gaultheria species. Additionally, seven mutational hotspot regions were identified as potential DNA barcodes for Chinese medicinal wintergreens. Our study is the first to generate complete plastomes and describe the structural variations of the complicated genus Gaultheria. In addition, our findings provide important resources for identification of Chinese medicinal wintergreens.
Yan-Ling Xu, Hao-Hua Shen, Xin-Yu Du, Lu Lu. Plastome characteristics and species identification of Chinese medicinal wintergreens (Gaultheria, Ericaceae)[J]. Plant Diversity, 2022, 44(06): 519-529.
Yan-Ling Xu, Hao-Hua Shen, Xin-Yu Du, Lu Lu. Plastome characteristics and species identification of Chinese medicinal wintergreens (Gaultheria, Ericaceae)[J]. Plant Diversity, 2022, 44(06): 519-529.
Ahmed, I., Matthews, P.J., Biggs, P.J., et al., 2013. Identification of chloroplast genome loci suitable for high-resolution phylogeographic studies of Colocasia esculenta (L.) Schott (Araceae) and closely related taxa. Mol. Ecol. Resour. 13, 929-937 Alexandre, M., Normand, B., 2010. Recombination and the maintenance of plant organelle genome stability. New Phytol. 186, 299-317 Amiryousefi, A., Hyvönen, J., Poczai, P., 2018. The chloroplast genome sequence of bittersweet (Solanum dulcamara): Plastid genome structure evolution in Solanaceae. PLoS ONE 13, e0196069 Aruna, P., Murugan, K., Priya, A., et al., 2014. Larvicidal, pupicidal and repellent activities of Gaultheria Oil (Plantae: Ericaceae) against the filarial vector, Culex quinquefasciatus (Insecta: Diptera: Culicidae). J. Entomol. Zool. Stud. 2, 290-294 Asano, T., Tsudzuki, T., Takahashi, S., et al., 2004. Complete nucleotide sequence of the sugarcane (Saccharum officinarum) chloroplast genome: a comparative analysis of four monocot chloroplast genomes. DNA Res. 11, 93-99 Bai, H.R., Oyebanji, O., Zhang, R. et al., 2021. Plastid phylogenomic insights into the evolution of subfamily Dialioideae (Leguminosae). Plant Divers. 43, 27-34 Barrett, C.F., Baker, W.J., Comer, J.R., et al., 2016. Plastid genomes reveal support for deep phylogenetic relationships and extensive rate variation among palms and other commelinid monocots. New Phytol. 209, 855-870 Beier, S., Thiel, T., Münch, T., et al., 2017. MISA-web: a web server for microsatellite prediction. Bioinformatics 33, 2583-2585 Benson, G., 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573-580 Bock, R., 2007. Structure, function, and inheritance of plastid genomes. Cell and Molecular Biology of Plastids. Springer, Berlin, pp. 29-63 Bryant, N., Lloyd, J., Sweeney, C., et al., 2011. Identification of nuclear genes encoding chloroplast-localized proteins required for embryo development in Arabidopsis. Plant Physiol. 155, 1678-1689 Casano, L.M., Martin, M., Sabater, B., 2001. Hydrogen peroxide mediates the induction of chloroplastic Ndh complex under photooxidative stress in barley. Plant Physiol. 125, 1450-1458 Cavalier-Smith, T., 2002. Chloroplast evolution: secondary symbiogenesis and multiple losses. Curr. Biol. 12, R62-R64 Chase, M.W., Fay, M.F., 2009. Barcoding of plants and fungi. Science 325, 682-683 Chen, S., Yao, H., Han, J., et al., 2010. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE 5, e8613 Cheng, Y., Miao, J.H., Ma, L.Y., et al., 2009. Study Advances on Chemical Constituents and Bioactivities from Plants of Genus Gaultheria. Lishizhen Med. Mater. Med. Res. 20, 3 Daniell, H., Lin, C.S., Yu, M., et al., 2016. Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol. 17, 1-29 Darling, A.C., Mau, B., Blattner, F.R., et al., 2004. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 14, 1394-1403 Dong, W., Liu, J., Yu, J., et al., 2012. Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding. PLoS ONE 7, e35071 Dong, W.L., Wang, R.N., Zhang, N.Y., et al., 2018. Molecular evolution of chloroplast genomes of orchid species: insights into phylogenetic relationship and adaptive evolution. Int. J. Mol. Sci. 19, 716 Downie, S.R., Jansen, R.K., Botany, S.J., 2015. A comparative analysis of whole plastid genomes from the Apiales: expansion and contraction of the inverted repeat, mitochondrial to plastid transfer of DNA, and identification of highly divergent noncoding regions. Syst. Bot. 40, 336-351 Doyle, J.J., Doyle, J.L., 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11-15 Erixon, P., Oxelman, B., 2008. Whole-gene positive selection, elevated synonymous substitution rates, duplication, and indel evolution of the chloroplast clpP1 gene. PLoS ONE 3, e1386 Fajardo, D., Senalik, D., Ames, M., et al., 2013. Complete plastid genome sequence of Vaccinium macrocarpon: structure, gene content, and rearrangements revealed by next generation sequencing. Tree Genet. Genomes 9, 489-498 Fritsch, P.W., Lu, L., 2020. A taxonomic revision of Gaultheria series Trichophyllae (Ericaceae). J. Bot. Res. Instit. Texas 14, 289-341 Fritsch, P.W., Lu, L., Bush, C.M., et al., 2011. Phylogenetic analysis of the wintergreen group (Ericaceae) based on six genic regions. Syst. Bot. 36, 990-1003 Fu, C.N., Mo, Z.Q., Yang, J.B., et al., 2022. Testing genome skimming for species discrimination in the large and taxonomically difficult genus Rhododendron. Mol. Ecol. Resour. 22, 404-414 Goulding, S.E., Wolfe, K., Olmstead, R., et al., 1996. Ebb and flow of the chloroplast inverted repeat. Mol. Gen. Genet. 252, 195-206 Guisinger, M.M., Kuehl, J.V., Boore, J.L., et al., 2011. Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: rearrangements, repeats, and codon usage. Mol. Biol. Evol. 28, 583-600 Haberle, R.C., Fourcade, H.M., Boore, J.L., et al., 2008. Extensive rearrangements in the chloroplast genome of Trachelium caeruleum are associated with repeats and tRNA genes. J. Mol. Evol. 66, 350-361 Hu, Y.F., Li, X., Li, Z.Z., et al., 2020. Research progress on chemical constituents, pharmacological activities and quality control of Gaultheria leucocarpa var. yunnanensis. Chin. Trad. Pat. Med. 42,162-167 Huang, J.L., Sun, G.L., Zhang, D.M., 2010. Molecular evolution and phylogeny of the angiosperm ycf2 gene. J. Syst. Evol. 48, 240-248 Jansen, R.K., Ruhlman, T.A., 2012. Plastid genomes of seed plants. Genomics of Chloroplasts and Mitochondria. Springer, Dordrecht, pp. 103-126 Jin, D.M., Jin, J.J., Yi, T.S., 2020a. Plastome structural conservation and evolution in the clusioid clade of Malpighiales. Sci. Rep. 10, 1-6 Jin, J.J., Yu, W.B., Yang, J.B., et al., 2020b. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21, 1-31 Katoh, K., Standley, D.M.J. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772-780 Kearse, M., Moir, R., Wilson, A., et al., 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647-1649 Kron, K., Fritsch, P., Lu, L., et al., 2020. New combinations and new and resurrected names in Gaultheria (Ericaceae). Gardens’ Bulletin Singapore 72, 299-317 Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870-1874 Kurtz, S., Choudhuri, J.V., Ohlebusch, E., et al., 2001. REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 29, 4633-4642 Lanfear, R., Frandsen, P.B., Wright, A.M., et al., 2017. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772-773 Lee, S.B., Kaittanis, C., Jansen, R.K., et al., 2006. The complete chloroplast genome sequence of Gossypium hirsutum: organization and phylogenetic relationships to other angiosperms. BMC Genomics 7, 1-12 Li, H., Guo, Q., Li, Q., et al., 2020. Long-reads reveal that Rhododendron delavayi plastid genome contains extensive repeat sequences, and recombination exists among plastid genomes of photosynthetic Ericaceae. PeerJ 8, e9048 Li, Z., Long, H., Zhang, L., et al., 2017. The complete chloroplast genome sequence of tung tree (Vernicia fordii): organization and phylogenetic relationships with other angiosperms. Sci. Rep. 7, 1-11 Librado, P., Rozas, J., 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451-1452 Liu, Q., Li, X., Li, M., et al., 2020. Comparative chloroplast genome analyses of Avena: insights into evolutionary dynamics and phylogeny. BMC Plant Biol. 20, 1-20 Liu, S., Wang, Z., Su, Y., et al., 2021. Comparative genomic analysis of Polypodiaceae chloroplasts reveals fine structural features and dynamic insertion sequences. BMC Plant Biol. 21, 1-15 Liu, W.R., Qiao, W.L., Liu, Z.Z., et al., 2013. Gaultheria: Phytochemical and pharmacological characteristics. Molecules 18, 12071-12108 Lu, L., Fritsch, P.W., Bush, C.M., et al., 2019a. Allopolyploidy in the Wintergreen Group of tribe Gaultherieae (Ericaceae) inferred from low-copy nuclear genes. Nord. J. Bot. 37, e02077 Lu, L., Fritsch, P.W., Cruz, B.C., et al., 2010. Reticulate evolution, cryptic species, and character convergence in the core East Asian clade of Gaultheria (Ericaceae). Mol. Phylogenet. Evol. 57, 364-379 Lu, L., Fritsch, P.W., Matzke, N.J., et al., 2019b. Why is fruit colour so variable? Phylogenetic analyses reveal relationships between fruit-colour evolution, biogeography and diversification. Glob. Ecol. Biogeogr. 28, 891-903 Luo, B.S., Gu, R.H., Kennelly, E.J., et al., 2018. Gaultheria ethnobotany and bioactivity: blueberry relatives with anti-inflammatory, antioxidant, and anticancer constituents. Curr. Med. Chem. 25, 5168-5176 Luo, B.S., Kastrat, E., Morcol, T., et al., 2021. Gaultheria longibracteolata, an alternative source of wintergreen oil. Food Chem. 342, 128244 Lv, S.Y., Ye, X.Y., Li, Z.H., et al., 2022. Testing complete plastomes and nuclear ribosomal DNA sequences for species identification in a taxonomically difficult bamboo genus Fargesia. Plant Divers. https://doi.org/10.1016/j.pld.2022.04.002 Ma, X., Zhao, L., Han, Z., et al., 2002. Comparison of the contents of lignans glycosides in 5 medicinal plants of Gaultheria by HPLC. J. Plant Resour. Environ. 11, 2 Ma, X.J., Zhao, L., Du, C.F., et al., 2001. Advances in studies on Gaultheria leucocarpa var. yunnanensis and medicinal plants of Gaultheria L. Chin. Trad. Herb. Drugs 32, 5 Martin, M., Casano, L.M., Sabater, B., 1996. Identification of the product of ndhA gene as a thylakoid protein synthesized in response to photooxidative treatment. Plant Cell Physiol. 37, 293-298 Mohanta, T.K., Mishra, A.K., Khan, A., et al., 2020. Gene loss and evolution of the plastome. Genes 11, 1133 Moore, M.J., Dhingra, A., Soltis, P.S., et al., 2006. Rapid and accurate pyrosequencing of angiosperm plastid genomes. BMC Plant Biol. 6, 1-13 Mukhopadhyay, M., Bantawa, P., Mondal, T.K., et al., 2016. Biological and phylogenetic advancements of Gaultheria fragrantissima: Economically important oil bearing medicinal plant. Ind. Crop. Prod. 81, 91-99 Mwanzia, V.M., He, D.X., Gichira, A.W., et al., 2020. The complete plastome sequences of five Aponogeton species (Aponogetonaceae): Insights into the structural organization and mutational hotspots. Plant Divers. 42, 334-342 Nguyen, L.T., Schmidt, H.A., Von Haeseler, A., et al., 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268-274 Nikolić, M., Marković, T., Mojović, M., et al., 2013. Chemical composition and biological activity of Gaultheria procumbens L. essential oil. Ind. Crop. Prod. 49, 561-567 Oliver, M.J., Murdock, A.G., Mishler, B.D., et al., 2010. Chloroplast genome sequence of the moss Tortula ruralis: gene content, polymorphism, and structural arrangement relative to other green plant chloroplast genomes. BMC Genomics 11, 1-8 Paredes, M., Quiles, M.J., 2013. Stimulation of chlororespiration by drought under heat and high illumination in Rosa meillandina. J. Plant Physiol. 170, 165-171 Peng, L., Yamamoto, H., Shikanai, T., 2011. Structure and biogenesis of the chloroplast NAD (P)H dehydrogenase complex. Biochim. Biophys. Acta, Bioenerg 1807, 945-953 Raubeson, L.A., Jansen, R.K., 2005. Chloroplast genomes of plants. Plant Diversity and Evolution: genotypic and phenotypic variation in higher plants. CABI, Cambridge, pp. 45-68 Ravi, V., Khurana, J., Tyagi, A., et al., 2008. An update on chloroplast genomes. Plant Syst. Evol. 271, 101-122 Ren, H., Lu, L., Wang, H., et al., 2011. DNA barcoding of Gaultheria L. in China (Ericaceae: Vaccinioideae). J. Syst. Evol. 49, 411-424 Ronquist, F., Teslenko, M., Van Der Mark, P., et al., 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539-542 Savage, L.J., Imre, K.M., Hall, D.A., et al., 2013. Analysis of essential Arabidopsis nuclear genes encoding plastid-targeted proteins. PLoS ONE 8, e73291 Shen, Z., Lu, T., Zhang, Z., et al., 2019. Authentication of traditional Chinese medicinal herb “Gusuibu” by DNA-based molecular methods. Ind. Crop. Prod. 141, 111756 Silva, S.R., Diaz, Y.C., Penha, H.A., et al., 2016. The chloroplast genome of Utricularia reniformis sheds light on the evolution of the ndh gene complex of terrestrial carnivorous plants from the Lentibulariaceae family. PLoS ONE 11, e0165176 Stamatakis, A., 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312-1313 Thode, V.A., Lohmann, L.G., 2019. Comparative chloroplast genomics at low taxonomic levels: a case study using Amphilophium (Bignonieae, Bignoniaceae). Front. Plant Sci. 10, 796 Timme, R.E., Kuehl, J.V., Boore, J.L., et al., 2007. A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: identification of divergent regions and categorization of shared repeats. Am. J. Bot. 94, 302-312 Wang, R.J., Cheng, C.L., Chang, C.C., et al., 2008. Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots. BMC Evol. Biol. 8, 1-14 Wang, R.N., Milne, R.I., Du, X.Y., et al., 2020. Characteristics and mutational hotspots of plastomes in Debregeasia (Urticaceae). Front. Genet. 11, 729 Wang, Y., Wang, S., Liu, Y., et al., 2021. Chloroplast genome variation and phylogenetic relationships of Atractylodes species. BMC Genomics 22, 1-12 Wang, Y.H., Wicke, S., Wang, H., et al., 2018. Plastid genome evolution in the early-diverging legume subfamily Cercidoideae (Fabaceae). Front. Plant Sci. 9, 138 Wick, R.R., Schultz, M.B., Zobel, J., et al., 2015. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31, 3350-3352 Wicke, S., Schneeweiss, G.M., Depamphilis, C.W., et al., 2011. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol. Biol. 76, 273-297 Williams, A.V., Miller, J.T., Small, I., et al., 2016. Integration of complete chloroplast genome sequences with small amplicon datasets improves phylogenetic resolution in Acacia. Mol. Phylogenet. Evol. 96, 1-8 Wolf, P.G., Der, J.P., Duffy, A.M., et al., 2011. The evolution of chloroplast genes and genomes in ferns. Plant Mol. Biol. 76, 251-261 Wu, H., Ma, P.F., Li, H.T. et al., 2021a. Comparative plastomic analysis and insights into the phylogeny of Salvia (Lamiaceae). Plant Divers. 43, 15-26 Wu, S., Chen, J., Li, Y., et al., 2021b. Extensive genomic rearrangements mediated by repetitive sequences in plastomes of Medicago and its relatives. BMC Plant Biol. 21, 1-16 Yang, J.B., Tang, M., Li, H.T., et al., 2013. Complete chloroplast genome of the genus Cymbidium: lights into the species identification, phylogenetic implications and population genetic analyses. BMC Evol. Biol. 13, 1-12 Ye, W.Q., Yap, Z.Y., Li, P., et al., 2018. Plastome organization, genome-based phylogeny and evolution of plastid genes in Podophylloideae (Berberidaceae). Mol. Phylogenet. Evol. 127, 978-987 Zhang, M.Y., Fritsch, P.W., Ma, P.F., et al., 2017. Plastid phylogenomics and adaptive evolution of Gaultheria series Trichophyllae (Ericaceae), a clade from sky islands of the Himalaya-Hengduan Mountains. Mol. Phylogenet. Evol. 110, 7-18 Zhang, Y., Li, J., He, F., et al., 2020. Chemical constituents of Gaultheria leucocarpa var. yunnanensis (Franch.) T.Z. Hsu & R.C. Fang. Centr. South Pharm. 18, 1800-1802 Zhang, Y.J., Ma, P.F., Li, D.Z., 2011. High-throughput sequencing of six bamboo chloroplast genomes: phylogenetic implications for temperate woody bamboos (Poaceae: Bambusoideae). PLoS ONE 6, e20596 Zhu, A., Guo, W., Gupta, S., et al., 2016. Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates. New Phytol. 209, 1747-1756 |
[1] | Rivontsoa A. Rakotonasolo, Soejatmi Dransfield, Thomas Haevermans, Helene Ralimanana, Maria S. Vorontsova, Meng-Yuan Zhou, De-Zhu Li. New insights into intergeneric relationships of Hickeliinae (Poaceae: Bambusoideae) revealed by complete plastid genomes[J]. Plant Diversity, 2023, 45(02): 125-132. |
[2] | Shi-Yu Lv, Xia-Ying Ye, Zhong-Hu Li, Peng-Fei Ma, De-Zhu Li. Testing complete plastomes and nuclear ribosomal DNA sequences for species identification in a taxonomically difficult bamboo genus Fargesia[J]. Plant Diversity, 2023, 45(02): 147-155. |
[3] | Yao-Ke Li, Julian Harber, Chuan Peng, Zhi-Qiang Du, Yao-Wu Xing, Chih-Chieh Yu. Taxonomic synopsis of Berberis (Berberidaceae) from the northern Hengduan mountains region in China, with descriptions of seven new species[J]. Plant Diversity, 2022, 44(05): 505-517. |
[4] | Mengqing Zhe, Le Zhang, Fang Liu, Yiwei Huang, Weishu Fan, Junbo Yang, Andan Zhu. Plastid RNA editing reduction accompanied with genetic variations in Cymbidium, a genus with diverse lifestyle modes[J]. Plant Diversity, 2022, 44(03): 316-321. |
[5] | Shiou Yih Lee, Ke-Wang Xu, Cui-Ying Huang, Jung-Hyun Lee, Wen-Bo Liao, Yong-Hong Zhang, Qiang Fan. Molecular phylogenetic analyses based on the complete plastid genomes and nuclear sequences reveal Daphne (Thymelaeaceae) to be non-monophyletic as current circumscription[J]. Plant Diversity, 2022, 44(03): 279-289. |
[6] | Jia-Xin Yang, Shuai Peng, Jun-Jie Wang, Shi-Xiong Ding, Yan Wang, Jing Tian, Han Yang, Guang-Wan Hu, Qing-Feng Wang. Morphological and genomic evidence for a new species of Corallorhiza (Orchidaceae: Epidendroideae) from SW China[J]. Plant Diversity, 2021, 43(05): 409-419. |
[7] | Xiaoping Li, Yamei Zhao, Xiongde Tu, Chengru Li, Yating Zhu, Hui Zhong, Zhong-Jian Liu, Shasha Wu, Junwen Zhai. Comparative analysis of plastomes in Oxalidaceae: Phylogenetic relationships and potential molecular markers[J]. Plant Diversity, 2021, 43(04): 281-291. |
[8] | Bibo Yang, Liangda Li, Jianquan Liu, Lushui Zhang. Plastome and phylogenetic relationship of the woody buckwheat Fagopyrum tibeticum in the Qinghai-Tibet Plateau[J]. Plant Diversity, 2021, 43(03): 198-205. |
[9] | Luxian Liu, Yonghua Zhang, Pan Li. Development of genomic resources for the genus Celtis (Cannabaceae) based on genome skimming data[J]. Plant Diversity, 2021, 43(01): 43-53. |
[10] | Han-Rui Bai, Oyetola Oyebanji, Rong Zhang, Ting-Shuang Yi. Plastid phylogenomic insights into the evolution of subfamily Dialioideae (Leguminosae)[J]. Plant Diversity, 2021, 43(01): 27-34. |
[11] | Hong Wu, Peng-Fei Ma, Hong-Tao Li, Guo-Xiong Hu, De-Zhu Li. Comparative plastomic analysis and insights into the phylogeny of Salvia (Lamiaceae)[J]. Plant Diversity, 2021, 43(01): 15-26. |
[12] | Srinivasa R. Chaluvadi, Porter Young, Kentrez Thompson, Bochra Amina Bahri, Bhavesh Gajera, Subhash Narayanan, Robert Krueger, Jeffrey L. Bennetzen. Phoenix phylogeny, and analysis of genetic variation in a diverse collection of date palm (Phoenix dactylifera) and related species[J]. Plant Diversity, 2019, 41(05): 330-339. |
[13] | Nan Lin, Xu Zhang, Tao Deng, Jianwen Zhang, Aiping Meng, Hengchang Wang, Hang Sun, Yanxia Sun. Plastome sequencing of Myripnois dioica and comparison within Asteraceae[J]. Plant Diversity, 2019, 41(05): 315-322. |
[14] | Changkun Liu, Zhenyan Yang, Lifang Yang, Junbo Yang, Yunheng Ji. The complete plastome of Panax stipuleanatus: Comparative and phylogenetic analyses of the genus Panax (Araliaceae)[J]. Plant Diversity, 2018, 40(06): 265-276. |
[15] | Liuqing Ma, Pengfei Ma, Dezhu Li. The first complete plastid genome of Burmannia disticha L. from the mycoheterotrophic monocot family Burmanniaceae[J]. Plant Diversity, 2018, 40(05): 232-237. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||