[1] Abbott, R., Albach, D., Ansell, S., et al., 2013. Hybridization and speciation. J. Evol. Biol. 26, 229-246 [2] Akiyama, R., Sun, J., Hatakeyama, M., et al., 2021. Fine-scale empirical data on niche divergence and homeolog expression patterns in an allopolyploid and its diploid progenitor species. New Phytol. 229, 3587-3601 [3] Arnheim, N. 1983. Concerted evolution of multigene families. In:Nei, M., Koehn, R. (Eds.), Evolution of Genes and Proteins. Sunderland:Sinauer. pp. 38-61 [4] Arrigo, N., De La Harpe, M., Litsios, G., et al., 2016. Is hybridization driving the evolution of climatic niche in Alyssum montanum? Am. J. Bot. 103, 1348-1357 [5] Alvarez, I., Wendel, J.F. 2003. Ribosomal ITS sequences and plant phylogenetic inference. Mol. Phylogenet. Evol. 29, 417-434 [6] Barow, M. 2006. Endopolyploidy in seed plants. Bioessays 28, 271-281 [7] Broennimann, O., Fitzpatrick, M.C., Pearman, P.B., et al., 2012. Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecol. Biogeogr. 21, 481-497 [8] Casazza, G., Boucher, F.C., Minuto, L., et al., 2017. Do floral and niche shifts favour the establishment and persistence of newly arisen polyploids? A case study in an Alpine primrose. Ann. Bot.119, 81-93 [9] Clausen, R.T. 1975. Sedum of North America North of the Mexican Plateau. Ithaca:Cornell University Press [10] Cody, W.J. 2000. Flora of the Yukon Territory, second ed. Ottawa:NRC Research Press [11] Cronn, R., Cedroni, M., Haselkorn, T., et al., 2002. PCR-mediated recombination in amplification products derived from polyploidy cotton. Theor. Appl. Genet. 104, 482-489 [12] Darriba, D., Taboada, G.L., Doallo, R., et al., 2012. jModelTest 2:more models, new heuristics and parallel computing. Nat. Methods 9, 772 [13] Di Cola, V., Broennimann, O., Petitpierre, B., et al., 2017. ecospat:an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774-787 [14] Doyle, J.J., Doyle, J.L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11-15 [15] Drummond, A.J., Suchard, M.A., Xie, D., et al., 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969-1973 [16] Edgar, R.C. 2004. MUSCLE:multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792-1797 [17] Elith, J., Graham, C.H., Anderson, R.P., et al., 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography 29, 129-151 [18] Feliner, G.N., Rossello, J.A. 2007. Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants. Mol. Phylogenet. Evol. 44, 911-919 [19] Ficetola, G.F., Stock, M. 2016. Do hybrid-origin polyploid amphibians occupy transgressive or intermediate ecological niches compared to their diploid ancestors? J. Biogeogr. 43, 703-715 [20] Fowler, N.L., Levin, D.A. 1984. Ecological constraints on the establishment of a novel polyploid in competition with its diploid progenitor. Am. Nat. 124, 703-711 [21] Fu, K.T., Ohba, H. 2001. Crassulaceae. In:Wu, C.Y., Raven, P.H. (Eds.), Flora of China, vol. 8. Beijing:Science Press, pp. 202-268 [22] Grant, V. 1981. Plant Speciation. New York:Columbia University Press [23] Guest, H.J., Allen, G.A. 2014. Geographical origins of North American Rhodiola (Crassulaceae) and phylogeography of the western roseroot, Rhodiola integrifolia. J. Biogeogr. 41, 1070-1080 [24] Han, T.S., Hu, Z.Y., Du, Z.Q., et al., 2022. Adaptive responses drive the success of polyploid yellowcresses (Rorippa, Brassicaceae) in the Hengduan Mountains, a temperate biodiversity hotspot. Plant Divers. 44, XXX-XXX [25] Hasumi H, Emori S. 2004. K-1 Coupled GCM (MIROC) Description. Center for Climate System Research, Univ. of Tokyo, Tokyo, Japan [26] Hermsmeier, U., Grann, J., Plescher, A. 2012. Rhodiola integrifolia:hybrid origin and Asian relatives. Botany 90, 1186-1190 [27] Hijmans, R.J., Cameron, S.E., Parra, J.L., et al., 2005. Very high-resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965-1978 [28] Huson, D.H., Kloepper, T., Bryant, D. 2008. SplitsTree 4.0-Computation of phylogenetic trees and networks. Bioinformatics 14, 68-73 [29] Kadereit, J.W. 2015. The geography of hybrid speciation in plants. Taxon 64, 673-687 [30] Kelly, L.J., Leitch, A.R., Clarkson, J.J., et al., 2013. Reconstructing the complex evolutionary origin of wild allopolyploid tobaccos (Nicotiana section Suaveolentes). Evolution 67, 80-94 [31] Levin, D.A. 1975. Minority cytotype exclusion in local plant populations. Taxon 24, 35-43 [32] Levin, D.A. 2002. The Role of Chromosomal Change in Plant Evolution. New York:Oxford University Press [33] Li, Y.C., Wen, J., Ren, Y., et al., 2019. From seven to three:integrative species delimitation supports major reduction in species number in Rhodiola section Trifida (Crassulaceae) on the Qinghai-Tibetan Plateau. Taxon 68, 268-279 [34] Lopez-Alvarez, D., Manzaneda, A.J., Rey, P.J., et al., 2015. Environmental niche variation and evolutionary diversification of the Brachypodium distachyon grass complex species in their native circum-Mediterranean range. Am. J. Bot. 102, 1073-1088 [35] Mallet, J. 2007. Hybrid speciation. Nature 446, 279 [36] Marchant, D.B., Soltis, D.E., Soltis, P.S. 2016. Patterns of abiotic niche shifts in allopolyploids relative to their progenitors. New Phytol. 212, 708-718 [37] Mayr, E. 2000. The Biological Species Concept. Species Concepts and Phylogenetic Theory:a Debate. New York:Columbia University Press, pp. 17-29 [38] Molina-Henao, Y.F., Hopkins, R. 2019. Autopolyploid lineage shows climatic niche expansion but not divergence in Arabidopsis arenosa. Am. J. Bot. 106, 61-70 [39] Phillips, S.J., Anderson, R.P., Schapire, R.E. 2006. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231-259 [40] Rambaut, A., Drummond, A.J., Xie, D., et al., 2018. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901-904 [41] R Core Team 2018. R:A Language and Environment for Statistical Computing. Vienna:R Foundation for Statistical Computing [42] Robertson, A., Rich, T.C., Allen, A.M., et al., 2010. Hybridization and polyploidy as drivers of continuing evolution and speciation in Sorbus. Mol. Ecol. 19, 1675-1690 [43] Schoener, T.W. 1968. Anolis lizards of Bimini:resource partitioning in a complex fauna. Ecology 49, 704-726 [44] Soltis, P.S., Soltis, D.E. 2009. The role of hybridization in plant speciation. Annu. Rev. Plant Biol. 60, 561-588 [45] Stamatakis, A. 2014. RAxML version 8:a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312-1313 [46] Stebbins GL. 1950. Variation and Evolution in Plants. New York:Columbia University Press [47] Uhl, C.H. 1952. Heteroploidy in Sedum rosea (L.) Scop. Evolution 6, 81-86 [48] Wang, A., Melton, A.E., Soltis, D.E., et al., 2022. Potential distributional shifts in North America of allelopathic invasive plant species under climate change models. Plant Divers. 44, 11-19 [49] Warren, D.L., Glor, R.E., Turelli, M. 2008. Environmental niche equivalency versus conservatism:quantitative approaches to niche evolution. Evolution 62, 2868-2883 [50] Wood, T.E., Takebayashi, N., Barker, et al., 2009. The frequency of polyploid speciation in vascular plants. Proc. Natl. Acad. Sci. U.S.A. 106, 13875-13879 [51] Yamane, K., Yano, K., Kawahara, T. 2006. Pattern and rate of indel evolution inferred from whole chloroplast intergenic regions in sugarcane, maize and rice. DNA Res. 13, 197-204 [52] Zhang, J.Q., Meng, S.Y., Allen, G.A., et al., 2014a. Rapid radiation and dispersal out of the Qinghai-Tibetan Plateau of an alpine plant lineage Rhodiola (Crassulaceae). Mol. Phylogenet. Evol. 77, 147-158 [53] Zhang, J.Q., Meng, S.Y., Wen, J., et al., 2014b. Phylogenetic relationships and character evolution of Rhodiola (Crassulaceae) based on nuclear ribosomal ITS and plastid trnL-F and psbA-trnH sequences. Syst. Bot. 39, 441-451 [54] Zhao, D.N., Ren, C.Q., Zhang, J.Q. 2021. Can plastome data resolve recent radiations? Rhodiola (Crassulaceae) as a case study. Bot. J. Linn. Soc. 197, 513-526 [55] Zimmer, E.A., Wen, J. 2013. Using nuclear gene data for plant phylogenetics:progress and prospects. Mol. Phylogenet. Evol. 66, 539-550 |