[1] Andro, M.C., Riffaud, J.P., 1995. Pygeum africana extract for the treatment of patients with benign prostatic hyperplasia: A review of 25 years of published experience. Curr. Ther. Res. 56, 796-817. [2] Appelhans, M.S., Paetzold, C., Wood, K.R., et al., 2020. RADseq resolves the phylogeny of Hawaiian Myrsine (Primulaceae) and provides evidence for hybridization. J. Syst. Evol. 58, 823-840. [3] Bai, H.R., Oyebanji, O., Zhang, R., et al., 2021. Plastid phylogenomic insights into the evolution of subfamily Dialioideae (Leguminosae). Plant Divers. 41, 27-34. [4] Benlloch, R., Berbel, A., Serrano-Mislata, A., et al., 2007. Floral initiation and inflorescence architecture: a comparative view. Ann. Bot. 100, 659-676. [5] Blischak, P.D., Chifman, J., Wolfe, A.D., et al., 2018. HyDe: A Python package for genome-scale hybridization detection. Syst. Biol. 67, 821-829. [6] Bortiri, E., Oh, S.H., Jiang, J.G., et al., 2001. Phylogeny and systematics of Prunus (Rosaceae) as determined by sequences analysis of ITS and the chloroplast trnL-trnF spacer DNA. Syst. Bot. 26, 797-807. [7] Bortiri, E., Oh, S.H., Gao, F.Y., et al., 2002. The phylogenetic utility of nucleotide sequences of sorbitol 6-phosphate dehydrogenase in Prunus (Rosaceae). Am. J. Bot. 89, 1697-1708. [8] Bortiri, E.S., Vanden, B., Potter, D., 2006. Phylogenetic analysis of morphology in Prunus reveals extensive homoplasy. Plant Syst. Evol. 259, 53-71. [9] Bouckaert, R., Vaughan, T.G., Barido-Sottani, J., et al., 2019. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Computat. Biol. 15, e1006650. [10] Chifman, J., Kubatko, L., 2014. Quartet Inference from SNP Data under the Coalescent Model. Bioinformatics 30, 3317-3324. [11] Chin, S.W., Wen, J., Johnson, G., et al., 2010. Merging Maddenia with the morphologically diverse Prunus (Rosaceae). Bot. J. Linn. Soc. 163, 236-245. [12] Chin, S.W., Shaw, J., Haberle, R., et al., 2014. Diversification of almonds, peaches, plums and cherries-molecular systematics and biogeographic history of Prunus (Rosaceae). Mol. Phylogenet. Evol. 76, 34-38. [13] Currano, E.D., Wilf, P., Wing, S.L., et al., 2008. Sharply increased insect herbivory during the Paleocene-Eocene Thermal Maximum. Proc. Natl. Acad. Sci. U.S.A. 105, 1960-1964. [14] Danacek, P., Auton, A., Abecasis, G., et al., 2011. The variant call format and VCFtools. Bioinformatics 27, 2156-2158. [15] Deng, W.Y.D., Su, T., Wappler, T., et al., 2020. Sharp changes in plant diversity and plant-herbivore interactions during the Eocene-Oligocene transition on the southeastern Qinghai-Tibetan Plateau. Global Planet. Change 194, 103293. [16] Doyle, J.J., Doyle, J.L., 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11-15. [17] Eaton, D.A.R., 2014. PyRAD: assembly of de novo RADseq loci for phylogenetic analyses. Bioinformatics 30, 1844-1849. [18] Eaton, D.A.R., Overcast, I., 2020. Ipyrad: Interactive assembly and analysis of RADseq datasets. Bioinformatics 36, 2592-2594. [19] Endress, P.K., 2010. Disentangling confusions in inflorescence morphology: patterns and diversity of reproductive shoot ramification in angiosperms. J. Syst. Evol. 48, 225-239. [20] Flower, B.P., Kennett, J.P., 1994. The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 108, 537-555. [21] Gerrath, J.M., Posluszny, U., Ickert-Bond, S.M., et al., 2017. Inflorescence morphology and development in the basal rosid lineage Vitales. J. Syst. Evol. 55, 542-558. [22] Guo, C., Ma, P.F., Yang, G.Q., et al., 2021. Parallel ddRAD and genome skimming analyses reveal a radiative and reticulate evolutionary history of the temperate bamboos. Syst. Biol. 70, 756-773. [23] Hodel, R.G.J., Zimmer. E., Wen, J., 2021. A phylogenomic approach resolves the backbone of Prunus (Rosaceae) and identifies signals of hybridization and allopolyploidy. Mol. Phylogenet. Evol. 160, 107118. [24] Hodel, R.G.J., Massatti, R., Knowles, L., 2022. Hybrid enrichment of adaptive variation revealed by genotype-environment associations in montane sedges. Mol. Ecol. 31, 3722-3737. [25] Jin, J.J., Yu, W.B., Yang, J.B., et al., 2020. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21, 241. [26] Kalkman, C., 2004. Rosaceae, in: Kubitzki, K. (Ed.), The families and genera of vascular plants VI. Springer, Berlin, pp. 343-386. [27] Kataoka, I., Sugiura, A., Tomana, T., 1988. Interspecific hybridization between Microcerasus and other Prunus spp. J. Jpn. Soc. Hortic. Sci. 56, 398-407. [28] Katoh, K., Standley, D.M., 2013. MAFFT multiple sequence alignment software version 7: improvement in performance and usability. Mol. Biol. Evol. 30, 772-780. [29] Kearse, M., Moir, R., Wilson, A., et al., 2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647-1649. [30] Lee, S., Wen, J., 2001. A phylogenetic analysis of Prunus and the Amygdaloideae (Rosaceae) using ITS sequences of nuclear ribosomal DNA. Am. J. Bot. 88, 150-160. [31] Lee, S.Y., Xu, K.W., Huang, C.Y., et al., 2022. Molecular phylogenetic analyses based on the complete plastid genomes and nuclear sequences reveal Daphne (Thymelaeaceae) to be non-monophyletic as current circumscription. Plant Divers. 44, 279-289. [32] Lei, F.W., Tong, L., Zhu, Y.X., et al., 2021. Plastid phylogenomics and biogeography of the medicinal plant lineage Hyoscyameae (Solanaceae). Plant Divers. 43, 192-197. [33] Li, Y., Smith, T., Liu, C.J., et al., 2011. Endocarps of Prunus (Rosaceae: Prunoideae) from the early Eocene of Wutu, Shandong Province, China. Taxon 60, 555-564. [34] Li, H.T., Yi, T.S., Gao, L.M., et al., 2019. Origin of angiosperms and the puzzle of the Jurassic gap. Nat. Plants. 5, 461-470. [35] Li, Q.J., Su, N., Zhang, L., et al., 2020. Chloroplast genomes elucidate diversity, phylogeny, and taxonomy of Pulsatilla (Ranunculaceae). Sci. Rep. 10, 19781. [36] Li, H.T., Luo, Y., Gan, L., et al., 2021a. Plastid phylogenomic insights into relationships of all flowering plant families. BMC Biology 19, 232. [37] Li, X.P., Zhao, Y.M., Tu, X.D., et al., 2021b. Comparative analysis of plastomes in Oxalidaceae: Phylogenetic relationships and potential molecular markers. Plant Divers. 43, 281-291. [38] Liu, X.L., Wen, J., Nie, Z.L., et al., 2013. Polyphyly of the Padus group of Prunus (Rosaceae) and the evolution of biogeographic disjunctions between eastern Asia and eastern North America. J. Plant Res. 126, 351-361. [39] Liu, B.B., Hong, D.Y., Zhou, S.L., et al., 2019. Phylogenomic analyses of the Photinia complex support the recognition of a new genus Phippsiomeles and the resurrection of a redefined Stranvaesia in Maleae (Rosaceae). J. Syst. Evol. 57, 678-694. [40] Liu, B.B., Campbell, C.S., Hong, D.Y., et al., 2020a. Phylogenetic relationships and chloroplast capture in the Amelanchier-Malacomeles-Peraphyllum clade (Maleae, Rosaceae): evidence from chloroplast genome and nuclear ribosomal DNA data using genome skimming. Mol. Phylogenet. Evol. 147, 106784. [41] Liu, B.B., Liu, G.N., Hong, D.Y., et al., 2020b. Eriobotrya belongs to Rhaphiolepis (Maleae, Rosaceae): evidence from chloroplast genome and nuclear ribosomal DNA data. Front. Plant Sci. 10, 1731. [42] Liu, B.B., Ma, Z.Y., Ren, C., et al., 2021. Capturing single-copy nuclear genes, organellar genomes, and nuclear ribosomal DNA from deep genome skimming data for plant phylogenetics: a case study in Vitaceae. J. Syst. Evol. 59, 1124-1138. [43] Liu, B.B., Ren, C., Kwak, M., et al., 2022a. Phylogenomic conflict analyses in the apple genus Malus s.l. reveal widespread hybridization and allopolyploidy driving diversification, with insights into the complex biogeographic history in the Northern Hemisphere. J. Integr. Plant Biol. 64, 1020-1043. [44] Liu, C., Chen, H.H., Tang, L.Z., et al., 2022b. Plastid genome evolution of a monophyletic group in the subtribe Lauriineae (Laureae, Lauraceae). Plant Divers. 44, 377-388. [45] Lu, L.D., Gu, C.Z., Li, C.L., et al., 2003. Rosaceae, in: Wu, Z.Y., Raven, P.H., Hong, D.Y. (Eds.), Flora of China. Beijing, Science Press, St. Louis, MO, Missouri Botanical Garden Press, pp. 46-434. [46] Ma, Q., Zhang, W.H, Xiang, Q.Y., 2017. Evolution and developmental genetics of floral display-a review of progress. J. Syst. Evol. 55, 487-515. [47] Ma, Z.Y., Wen, J., Tian, J.P., et al., 2018. Testing reticulate evolution of four Vitis species from East Asia using restriction-site associated DNA sequencing. J. Syst. Evol. 56, 311-399. [48] Maddison, W.P., Maddison, D.R., 2018. Mesquite: a modular system for evolutionary analysis v3.51 (Version 3.51). http://www.mesquiteproject.org. [49] McInerney, F.A., Wing, S.L., 2011. The Paleocene-Eocene Thermal Maximum: A perturbation of the carbon cycle, climate, and biosphere with implications for the future. Annu. Rev. Earth Planet. Sci. 39, 489-516. [50] Miller, M.A., Pfeiffer, W., Schwartz, T., 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees, in: 2010 Gateway Computing Environments Workshop (GCE). New Orleans, pp. 1-8. [51] Mowrey, B.D., Werner, D.J., 1990. Phylogenetic relationships among species of Prunus as inferred by isozyme markers. Theor. Appl. Genet. 80, 129-133. [52] Mu, X.Y., Tong, L., Sun, M., et al., 2020. Phylogeny and divergence time estimation of the walnut family (Juglandaceae) based on nuclear RAD-Seq and chloroplast genome data. Mol. Phylogenet. Evol. 147, 106802. [53] Parkin, J., 1914. The evolution of the inflorescence. Bot. J. Linn. Soc. 42, 511-563. [54] Prothero, D.R., 1994. The late Eocene-Oligocene extinctions. Annu. Rev. Earth Planet. Sci. 22, 145-165. [55] Qu, X.J., Moore, M.J., Li, D.Z., et al., 2019. PGA: a software package for rapid, accurate, and flexible batch annotation of plastomes. Plant Methods 15, 1-12. [56] Rambaut, A., Drummond, A.J., Xie, D., et al., 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901-904. [57] Rehder, A., 1956. Manual of cultivated trees and shrubs hardy in North America exclusive of the subtropical and warmer temperate regions, second ed. Macmillan, New York. [58] Ronquist, F., Teslenko, M., van der Mark, P., et al., 2012. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539-542. [59] Shi, S., Li, J.L., Sun, J.H., et al., 2013. Phylogeny and classification of Prunus sensu lato (Rosaceae). J. Integr. Plant Biol. 55, 1069-1079. [60] Sokoloff, D.D., Ignatov, M.S., Remizowa, M.V., et al., 2018. Staminate flower of Prunus s.l. (Rosaceae) from Eocene Rovno amber (Ukraine). J. Plant Res. 131, 925-943. [61] Stamatakis, A., 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312-1313. [62] Stebbins, G.L., 1973. Evolutionary trends in the inflorescence of angiosperms. Flora 162, 501-528 [63] Su, N., Liu, B.B., Wang, J.R., et al., 2021. On the species delimitation of the Maddenia group of Prunus (Rosaceae): evidence from plastome and nuclear sequences and morphology. Front. Plant Sci. 12, 743643. [64] Sun, X.W., Liu, D.Y., Zhang, X.F., et al., 2013. SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS One 8, e58700. [65] Sun, J.M., Ni, X.J., Bi, S.D., et al., 2014. Synchronous turnover of flora, fauna, and climate at the Eocene-Oligocene Boundary in Asia. Sci. Rep. 4, 7463. [66] Takhtajan, A., 1991. Evolutionary Trends in Flowering Plants. New York, Columbia University Press. [67] Thode, V.A., Lohmann, L.G., Sanmartin, I., 2020. Evaluating character partitioning and molecular models in plastid phylogenomics at low taxonomic levels: a case study using Amphilophium (Bignonieae, Bignoniaceae). J. Syst. Evol. 58, 1071-1089. [68] Vargas, O.M., Ortiz, E.M., Simpson, B.B., 2017. Conflicting phylogenomic signals reveal a pattern of reticulate evolution in a recent high-Andean diversification (Asteraceae: Astereae: Diplostephium). New Phytol. 214, 1736-1750. [69] Wagner, N.D., He, L., Horandl, E., 2020. Phylogenomic relationships and evolution of polyploid Salix species revealed by RAD sequencing data. Front. Plant Sci. 11, 1077. [70] Walker, J.F., Smith, S.A., Hodel, R.G.J., et al., 2022. Concordance-based approaches for the inference of relationships and molecular rates with phylogenomic data sets. Syst. Biol. 71, 943-958. [71] Wang, Y.B., Liu, B.B., Nie, Z.L., et al., 2020. Major clades and a revised classification of Magnolia and Magnoliaceae based on whole plastid genome sequences via genome skimming. J. Syst. Evo. 58, 673-695. [72] Wang, N., Kelly, L.J., McAllister, H.A., et al., 2021. Resolving phylogeny and polyploid parentage using genus-wide genome-wide sequence data from birch trees. Mol. Phylogenet. Evol. 160, 107126. [73] Wen, J., Berggren, S.T., Lee, C.H., et al., 2008. Phylogenetic inferences in Prunus (Rosaceae) using chloroplast ndhF and nuclear ribosomal ITS sequences. J. Syst. Evol. 46, 322-332. [74] Wing, S.T., Currano, E.D., 2013. Plant response to a global greenhouse event 56 million years ago. Am. J. Bot. 100, 1234-1254. [75] Wu, H., Ma, P.F., Li, H.T., et al., 2021. Comparative plastomic analysis and insights into the phylogeny of Salvia (Lamiaceae). Plant Divers. 43, 15-26. [76] Xiang, Y.Z., Huang, C.H., Hu, Y., et al., 2016. Well-resolved Rosaceae nuclear phylogeny facilitates geological time and genome duplication analyses and ancestral fruit character reconstruction. Mol. Biol. Evol. 34, 262-281. [77] Xu, Y.L., Shen, H.H., Du, X.Y., et al., 2022. Plastome characteristics and species identification of Chinese medicinal wintergreens (Gaultheria, Ericaceae). Plant Divers. 44, 519-529. [78] Yu, T.T., Lu, L.T., Ku, T.C., et al., 1986. Rosaceae (3) Prunoideae, in: Yu, T.T. (Ed.), Flora Reipublicae Popularis Sinicae, vol. 38. Beijing, Science Press, pp. 1-133. [79] Zhang, N., Wen, J., Zimmer, E.A., 2015. Congruent deep relationships in the grape family (Vitaceae) based on sequences of chloroplast genomes and mitochondrial genes via genome skimming. PLoS One 10, e0144701. [80] Zhang, S.D., Jin, J.J., Chen, S.Y., et al., 2017. Diversification of Rosaceae since the Late Cretaceous based on plastid phylogenomics. New Phytol. 214, 1355-1367. [81] Zhang, Y.M., Han, L.J., Yang, C.W., et al., 2022. Comparative chloroplast genome analysis of medicinally important Veratrum (Melanthiaceae) in China: Insights into genomic characterization and phylogenetic relationships. Plant Divers. 44, 70-82. [82] Zhao, L., Jiang, X.W., Zuo, Y.J., et al., 2016. Multiple events of allopolyploidy in the evolution of the racemose lineages in Prunus (Rosaceae) based on integrated evidence from nuclear and plastid data. PLoS One 11, e0157123. [83] Zhao, L., Potter, D., Xu, Y., et al., 2018. Phylogeny and spatio-temporal diversification of Prunus subgenus Laurocerasus section Mesopygeum (Rosaceae) in the Malesian region. J. Syst. Evol. 56, 637-651. [84] Zhou, M.M., Yang, G.Q., Sun, G.L., et al., 2020. Resolving complicated relationships of the Panax bipinnatifidus complex in southwestern China by RAD-seq data. Mol. Phylogenet. Evol. 149, 106851. [85] Zimmer, E.A., Wen, J., 2015. Using nuclear gene data for plant phylogenetics: progress and prospects II. Next-gen approaches. J. Syst. Evol. 53, 371-379. |