Plant Diversity ›› 2023, Vol. 45 ›› Issue (02): 199-210.DOI: 10.1016/j.pld.2022.08.001
Harshita Bhatiaa,b, Gaurav Srivastavaa,b, R. C. Mehrotraa
收稿日期:
2022-04-06
修回日期:
2022-08-04
出版日期:
2023-03-25
发布日期:
2023-06-13
通讯作者:
Gaurav Srivastava,E-mail:gaurav_jan10@yahoo.co.in
Harshita Bhatiaa,b, Gaurav Srivastavaa,b, R. C. Mehrotraa
Received:
2022-04-06
Revised:
2022-08-04
Online:
2023-03-25
Published:
2023-06-13
Contact:
Gaurav Srivastava,E-mail:gaurav_jan10@yahoo.co.in
摘要: During the early Paleogene, greenhouse gases created warm global climates. These warm climates redistributed the habitat of marine and terrestrial biota globally. Understanding the ecology of biotas under extremely warm climates is important to decipher their behavior in future climate warming. Here we report two new legume fossils (Leguminocarpum meghalayensis Bhatia, Srivastava et Mehrotra sp. nov., and Parvileguminophyllum damalgiriensis Bhatia, Srivastava et Mehrotra sp. nov.) from the late Paleocene sediments of Tura Formation of Meghalaya, northeast India. Globally, the Paleocene legume fossil records indicate that legumes most likely immigrated to India from Africa via the Ladakh-Kohistan Arc during the early Paleogene. Moreover, previously reconstructed climate data from the Tura Formation indicate that legumes were well adapted to a warm seasonal climate with monsoon rains.
Harshita Bhatia, Gaurav Srivastava, R. C. Mehrotra. Legumes from the Paleocene sediments of India and their ecological significance[J]. Plant Diversity, 2023, 45(02): 199-210.
Harshita Bhatia, Gaurav Srivastava, R. C. Mehrotra. Legumes from the Paleocene sediments of India and their ecological significance[J]. Plant Diversity, 2023, 45(02): 199-210.
[1] Ambwani, K., Kar, R.K., 2000. Occurrence of Anonidium-like pollen in the Tura formation (Palaeocene) of Meghalaya, India. Palaeobotanist 49, 219-223. [2] Axelrod, D.I., 1992. Climatic pulses, a major factor in legume evolution, in: Herendeen, P.S., Dilcher, D.L. (Eds.), Advances in Legume Systematics, Part 4. The Fossil Record. Royal Botanic Gardens, Kew, London, UK, pp. 259-279. [3] Bakshi, S.K.,1974. Significant pollen taxa in the stratigraphical analysis of the Tertiary sediments of Assam, in Surange, K.R., Lakhanpal, R.N., Bhardwaj, D.C. (Eds.), Aspects and Appraisal of Indian Palaeobotany. Birbal Sahni Institute of Palaeobotany, Lucknow, India, pp. 502-515. [4] Bhatia, H., Khan, M.A., Srivastava, G., et al., 2021. Late Cretaceous-Paleogene Indian monsoon climate vis-a-vis movement of the Indian plate, and the birth of the South Asian Monsoon. Gondwana Res. 93, 89-100. [5] Bhattacharyya, B., 1983. FossiI plants from the Tura Formation (Eocene) in the Garo Hills. Meghalaya. Ind. J. Earth Sci. 10, 1-10. [6] Bhattacharyya, B., 1985. Leguminous fruits from the Eocene of Garo Hills, Meghalaya. Q. J. Geol. Min. Metall. Soc. India 57, 215-225. [7] Biswas, B., 1962. Stratigraphy of the Mahadeo, Langpar, Cherra and Tura formations, Assam, India. Bull. Geol. Min. Metall. Soc. India 25,1-48. [8] Brea, M., Zamuner, A.B., Matheos, S.D., et al., 2008. Fossil wood of the Mimosoideae from the early Paleocene of Patagonia, Argentina. Alcheringa 32, 427-441. [9] Bruneau, A., Mercure, M., Lewis, G.P., Herendeen, P.S., 2008. Phylogenetic patterns and diversification in the caesalpinioid legumes. Botany 86, 697-718. [10] Centeno-Gonzalez, N.K., Martinez-Cabrera, H.I., Porras-Muzquiz, H., et al., 2021. Late Campanian fossil of a legume fruit supports Mexico as a center of Fabaceae radiation. Commun. Biol. 4, 41. [11] Chakraborty, A., Baksi, S.K., 1972. Stratigraphy of the Cretaceous-Tertiary sedimentary sequence, south-west of Shillong Plateau. Q. J. Geol. Min. Metall. Soc. India 44, 109-127. [12] Chatterjee, S., Goswami, A., Scotese, C.R., 2013. The longest voyage: tectonic, magmatic, and palaeoclimatic evolution of Indian plate during its northward flight from Gondwana to Asia. Gondwana Res. 23, 238-267. [13] Chavan, S., Sardesai, M.M., Pokle, D.S., 2013. Alysicarpus sanjappae (Leguminosae- Papilionoideae): a new species from Western Ghats of India. Kew Bull. 68, 183-186. [14] Crepet, W.L., Herendeen, P.S., 1992. Papilionoid flowers from the Early Eocene of southwestern North America in: Herendeen, P.S., Dilcher, D.L. (Eds.), Advances in Legume Systematics, Part 4. The Fossil Record. Royal Botanic Gardens, Kew, London, UK, pp. 45-55. [15] Crepet, W.L., Taylor, D.W., 1985. The diversification of the Leguminosae: first fossil evidence of the Mimosoideae and Papilionoideae. Science 228,1087-1089. [16] Dilcher, D.L., 1974. Approaches to the identification of angiosperm leaf remains. Bot. Rev. 40, 1-157. [17] Dutta, S.K., Sah, S.C.D., 1970. Palynostratigraphy of the Tertiary sedimentary formations of Assam: 5. Stratigraphy and palynology of South Shillong Plateau. Palaeontogr. Abt. B 11, 1-72. [18] Ellis, B., Daly, D.C., Hickey, L.J., et al., 2009. Manual of Leaf Architecture. Cornell University Press, Ithaca, New York. [19] Herendeen, P.S., 1992. The fossil history of the Leguminosae from the Eocene of southeastern North America in: Herendeen, P.S., Dilcher, D.L. (Eds.), Advances in Legume Systematics, Part 4. The Fossil Record. Royal Botanic Gardens, Kew, London, UK, pp. 85-160. [20] Herendeen, P.S., Cardoso, D.B.O.S., Herrera, F., Wing, S.L., 2022. Fossil papilionoids of the Bowdichia clade (Leguminosae) from the Paleogene of North America. Am. J. Bot. 109, 1-21. [21] Herendeen, P.S., Crane, P.R., 1992. Early caesalpinioid fruits from the Paleogene of southern England in: Herendeen, P.S., Dilcher, D.L. (Eds.), Advances in Legume Systematics, Part 4. The Fossil Record. Royal Botanic Gardens, Kew, London, UK, pp. 57-68. [22] Herendeen, P.S., Crepet, W.L., Dilcher, D.L., 1992. The fossil history of the Leguminosae: phylogenetic and biogeographical implications in: Herendeen, P.S., Dilcher, D.L. (Eds.), Advances in Legume Systematics, Part 4. The Fossil Record. Royal Botanic Gardens, Kew, London, UK, pp. 303-316. [23] Herrera, F., Carvalho, M.R., Wing, S.L., et al., 2019. Middle to Late Paleocene Leguminosae fruits and leaves from Colombia. Aust. Syst. Bot. 32, 385-408. [24] Iglesias, A., Wilf, P., Johnson, K.R., et al., 2007. A Paleocene lowland macroflora from Patagonia reveals significantly greater richness than North American analogs. Geology 35, 947-950. [25] Kar, R.K., Kumar, M., 1986. Palaeocene palynostratigraphy of Meghalaya, India. Pollen Spores 28, 177-218. [26] Koenen, E.J.M., Ojeda, D.I., Steeves, R., et al., 2019. The origin and early evolution of the legumes are a complex paleopolyploid phylogenomic tangle closely associated with the Cretaceous-Paleogene (K-Pg) Boundary. Syst. Biol. 70, 508- 526. [27] Lakhanpal, R.N., 1952. Nipa sahnii a palm fruit in the Tertiary of Assam. Palaeobotanist I, 289-294. [28] Lavin, M., Herendeen, P.S., Wojciechowski, M.F., 2005. Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the Tertiary. Syst. Biol. 54, 575-594. [29] Lewis, G., Schrire, B., Mackinder, B., et al., 2005. Legumes of the World. Royal Botanic Gardens, Kew, Richmond, U.K. [30] LPWG (Legume Phylogeny Working Group), 2013. Legume phylogeny and classification in the 21st century: Progress, prospects and lessons for other species-rich clades. Taxon 62, 217-248. [31] LPWG (Legume Phylogeny Working Group), 2017. A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon 66, 44-77. [32] Lyson, T.R., Miller, I.M., Bercovici, A.D., et al., 2019. Exceptional continental record of biotic recovery after the Cretaceous-Paleogene mass extinction. Science 366, 977-983. [33] Ma, F.J., Liu, S., Sun, B.N., et al., 2017. Legume fruits from the Oligocene Ningming Formation of Guangxi, China, and their biogeographical and palaeoclimatic implications. Rev. Palaeobot. Palynol. 244, 192-202. [34] Magallon, S., Gomez-Acevedo, S., Sanchez-Reyes, L.L., et al., 2015. A meta calibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytol. 207, 437-453. [35] Mehrotra, N., 1981. Palynological correlation of Mikir formation with lower Palaeogene sediments of Shillong Plateau. Geophytology 11, 133-142. [36] Mehrotra, R.C., 2000. Study of plant megafossils from the Tura Formation of Nangwalbibra, Garo Hills, Meghalaya, India. Palaeobotanist 49, 225-237. [37] Mehrotra, R.C., Dilcher, D.L., Awasthi, N., 1998. A Palaeocene Mangifera - like leaf fossil from India. Phytomorphology 48, 91-100. [38] Monga, P., Srivastava, G., Kumar, M., Mehrotra, R.C., 2014. Further palynological investigation of coaliferous sequences of Tura formation of Nangwalbibra, East Garo Hillls, Meghalaya: Inferences on palaeovegetation and palaeoclimate. Palaeobotanist 63, 79-85. [39] Raja Rao, C.S., 1981. Coalfields of India: Coalfields of northeastern India. Bull. Geol. Soc. India Ser A 45, 1-76. [40] Raven, P.H., Polhill, R.M., 1981. Advances in Legume Systematics, Part 1. Royal Botanic Gardens, Kew, London, UK, pp. 27-34. [41] Raven, P.H., Axelrod, D.I., 1974. Angiosperm biogeography and past continental movements. Ann. Mo. Bot. Gard. 61, 539-673. [42] Sah, S.C.D., Dutta, S.K., 1974. Palynostratigraphy of sedimentary formations of Assam: 3. Biostratigraphic zonation of Cherra formation of South Shillong Plateau. Palaeobotanist 21, 42-47. [43] Sah, S.C.D., Singh, R.Y., 1974. Palynological biostratigraphy of the Tura formation in the type area in: Sah, S.C.D. (Ed.) Symposium on Stratigraphical Palynology, Special Publication 3, Birbal Sahni Institute of Palaeobotany, Lucknow, India, pp 76-98. [44] Sanjappa, M., 1991. Legumes of India. Bishen Singh Mahendra Pal Singh Publication, Dehra Dun, India [45] Sanjappa, M., 1995. Leguminosae-Papilionoideae: Tribe-Indigofereae in: Hajra, P.K., Sashtry, A.R.K., Sanjappa, M. (Eds.), Fascicles of Flora of India - 21, Botanical Survey of India, Calcutta, pp. 1-167. [46] Saxena, R.K., Tripathi, S.K.M., Prasad, V., 1996. Palynofloral investigation of the Tura formation (Palaeocene) in Nongwal Bibra area, East Garo Hills, Meghalaya. Geophytology 26, 19-31. [47] Schrire, B.D., Lavin, M., Lewis, G.P., 2005a. Global distribution patterns of the Leguminosae: insights from recent phylogenies. Biologiske Skrifter 55, 375-422. [48] Schrire, B.D., Lewis, G.P., Lavin, M., 2005b. Biogeography of the Leguminosae in: Lewis, G., Schrire, B., Mackindera, B., Lock M., (Eds.), Legumes of the World. Royal Botanic Gardens, Kew, London, UK, pp. 21-54. [49] Scotese, C.R., 2001. Earth System History Geographic Information System, Version 0.2b (PALEOMAP Project, Arlington, TX). [50] Srivastava, G., Mehrotra, R.C., Dilcher, D.L., 2018. Paleocene Ipomoea (Convolvulaceae) from India with implications for an East Gondwana origin of Convolvulaceae. Proc. Natl. Acad. Sci. U.S.A. 115, 6028-6033. [51] Tripathi, S.K.M., Singh, H.P., 1984. Palynostratigraphical zonation and correlation of the Jowai-Sonapur Road Section (Paleocene-Eocene), Meghalaya, India, in: Tiwari, R.S., Awasthi, N., Srivastava, S.C., Singh, H.P., Sharma, B.B. (Eds.). Proceeding of the Sixth Indian Geophytological Conference. Special Publication of the Palaeobotanical Society, Lucknow, India, pp. 316-328. [52] Wang, Q., 2012. Nomenclatural notes on Leguminosites and several taxonomically relevant names (fossil Leguminosae). Taxon 61, 871-877. [53] Wang, Q., Dilcher, D.L., Zhu, X.Y., et al., 2006. Fruits and Leaflets of Wisteria (Leguminosae, Papilionoideae) from the Miocene of Shandong Province, Eastern China. Int. J. Plant Sci.167, 1061-1074. [54] Wang, Q., Manchester, S.R., Dilcher, D.L., 2010. Fruits and foliage of Pueraria (Leguminosae, Papilionoideae) from the Neogene of Eurasia and their biogeographic implications. Am. J. Bot. 97, 1982-1998. [55] Wang, H., Moore, M.J., Soltis, P.S., et al., 2009. Rosid radiation and the rapid rise of angiosperm-dominated forests. Proc. Natl. Acad. Sci. U.S.A. 106, 3853-3858. [56] Wing, S.L., Harrington, G.J., Smith, F.A., et al., 2005. Transient floral change and rapid global warming at the Paleocene-Eocene boundary. Science 310, 993-996. [57] Wing, S.L., Herrera, F., Jaramillo, C.A., et al., 2009. Late Paleocene fossils from the Cerrejon Formation, Colombia, are the earliest record of Neotropical rainforest. Proc. Natl. Acad. Sci. U.S.A. 106, 18627-18632. [58] Yahara, T., Javadi, F., Onoda, Y., et al., 2013. Global legume diversity assessment: concepts, key indicators, and strategies. Taxon 62, 249-266. [59] Zachos, J., Pagani, M., Sloan, L., et al., 2001. Trends, rhythms, and Aberrations in global climate 65 Ma to present. Science 292, 686-693. [60] Zhao, Y., Zhang, R., Jiang, K.-W., et al., 2021. Nuclear phylotranscriptomics and phylogenomics support numerous polyploidization events and hypotheses for the evolution of rhizobial nitrogen-fixing symbiosis in Fabaceae. Mol. Plant 14, 748-773. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||