[1] Ackerly, D., 2009. Conservatism and diversification of plant functional traits: evolutionary rates versus phylogenetic signal. Proc. Natl. Acad. Sci. U.S.A. 106, 19699-19706. [2] Blackburn, T.M., Pysek, P., Bacher, S., Carlton, J.T., et al., 2011. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333-339. [3] Catford, J.A., Jansson, R., Nilsson, C., 2009. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers. Distrib. 15, 22-40. [4] Cavender-Bares, J., Kozak, K.H., Fine, P.V.A., et al., 2009. The merging of community ecology and phylogenetic biology. Ecol. Lett.12, 693-715. [5] Donoghue, M.J., 2008. A phylogenetic perspective on the distribution of plant diversity. Proc. Natl. Acad. Sci. U.S.A. 105, 11549-11555. [6] Gaertner, M., Biggs, R., Te Beest, R., et al., 2014. Invasive plants as drivers of regime shifts: identifying high-priority invaders that alter feedback relations. Divers. Distrib. 20, 733-744. [7] Germishuizen, G., Meyer, N.L., 2003. Plants of southern Africa: an annotated checklist Strelitzia 14. National Botanical Institute, Pretoria. [8] Hao, Q., Ma, J.S., 2023. Invasive alien plants in China: An update. Plant Divers. 45, 117-121. [9] Jin, Y., Qian, H., 2019. V.PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography, 42, 1353-1359. [10] Jin, Y., Qian, H., 2022. V.PhyloMaker2: An updated and enlarged R package that can generate very large phylogenies for vascular plants. Plant Divers. 44, 335-339. [11] Jin, Y., Qian, H., 2023. U.PhyloMaker: An R package that can generate large phylogenetic trees for plants and animals. Plant Divers. https://doi.org/10.1016/j.pld.2022.12.007 [12] Kerns, B.K., Tortorelli, C., Day, M.A., et al., 2020. Invasive grasses: A new perfect storm for forested ecosystems? For. Ecol. Manage. 463, 117985. [13] Krishna, M., Winternitz, J., Garkoti, S.C., et al., 2021. Functional leaf traits indicate phylogenetic signals in forests across an elevational gradient in the central Himalaya. J. Plant Res. 134, 753-764. [14] Lambertini, M., Leape, J., Marton-Lefevre, J., et al., 2011. Invasives: a major conservation threat. Science 333, 404-405. [15] Levine, J.M., Vila, M., Antonio, C.M., et al., 2003. Mechanisms underlying the impacts of exotic plant invasions. Proc. R. Soc. B-Biol. Sci. 270, 775-781. [16] Lu, L.-M., Mao, L.-F., Yang, T., et al., 2018. Evolutionary history of the angiosperm flora of China. Nature 554, 234-238. [17] Ma, J., 2013. The Checklist of the Chinese Invasive Plants. High Education Press, Beijing. [18] Ma, J., Li, H., 2018. The Checklist of the Alien Invasive Plants in China. High Education Publisher, Beijing. [19] McGeoch, M.A., Butchart, S.H.M., Spear, D., et al., 2010. Global indicators of biological invasion: species numbers, biodiversity impact and policy responses. Divers. Distrib. 16, 95-108. [20] Omer, A., Fristoe, T., Yang, Q., et al., 2022. The role of phylogenetic relatedness on alien plant success depends on the stage of invasion. Nat. Plants 8, 906-914. [21] Park, D.S., Feng, X., Maitner, B.S., et al., 2020. Darwin’s naturalization conundrum can be explained by spatial scale. Proc. Natl. Acad. Sci. U.S.A. 117, 10904-10910. [22] Qian, H., 2023. Patterns of phylogenetic relatedness of non-native plants across the introduction-naturalization-invasion continuum in China. Plant Divers. https://doi.org/10.1016/j.pld.2022.12.005 [23] Qian, H., Deng, T., 2023. Species invasion and phylogenetic relatedness of vascular plants on the Qinghai-Tibet Plateau, the roof of the world. Plant Divers. https://doi.org/10.1016/j.pld.2023.01.001 [24] Qian, H., Jin, Y., 2016. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J. Plant Ecol. 9, 233-239. [25] Qian, H., Jin, Y., 2021. Are phylogenies resolved at the genus level appropriate for studies on phylogenetic structure of species assemblages? Plant Divers. 43, 255-263. [26] Qian, H., Qian, S., 2022. Floristic homogenization as a result of the introduction of exotic species in China. Divers. Distrib. 28, 2139-2151. [27] Qian, H., Sandel, B., 2022. Darwin’s preadaptation hypothesis and the phylogenetic structure of native and alien regional plant assemblages across North America. Global Ecol. Biogeogr. 31, 531-545. [28] Qian, H., Deng, T., Jin, Y., et al., 2019. Phylogenetic dispersion and diversity in regional assemblages of seed plants in China. Proc. Natl. Acad. Sci. U.S.A. 116, 23192-23201. [29] Qian, H., Rejmanek, M., Qian, S., 2022a. Are invasive species a phylogenetically clustered subset of naturalized species in regional floras? A case study for flowering plants in China. Divers. Distrib. 28, 2084-2093. [30] Qian, H., Qian, S., Sandel, B., 2022b. Phylogenetic structure of alien and native species in regional plant assemblages across China: Testing niche conservatism hypothesis versus niche convergence hypothesis. Global Ecol. Biogeogr. 31, 1864-1876. [31] Rejmanek, M., Richardson, D.M., Pysek, P., 2013. Plant invasions and invasibility of plant communities. In: Vegetation Ecology (eds E. Van der Maarel & J. Franklin), pp. 387-424. Wiley-Blackwell, Chichester. [32] Richardson, D.M., Pysek, P., Rejmanek, M., et al., 2000. Naturalization and invasion of alien plants: concepts and definitions. Divers. Distrib. 6, 93-107. [33] Sandel, B., Tsirogiannis, C., 2016. Species introductions and the phylogenetic and functional structure of California's grasses. Ecology 97, 472-483. [34] Simberloff, D., Martin, J.L., Genovesi, P., et al., 2013. Impacts of biological invasions: what’s what and the way forward. Trends Ecol. Evol. 28, 58-66. [35] Smith, S.A., Brown, J.W., 2018. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302-314. [36] Tsirogiannis, C., Sandel, B., 2016. PhyloMeasures: a package for computing phylogenetic biodiversity measures and their statistical moments. Ecography 39, 709-714. [37] Tsirogiannis, C., Sandel, B., Cheliotis, D., 2012. Efficient computation of popular phylogenetic tree measures. Lect. Notes Comput. Sci. 7534, 30-43. [38] Tsirogiannis, C., Sandel, B., Kalvisa, A., 2014. New algorithms for computing phylogenetic biodiversity. Lect. Notes Comput. Sci. 8701, 187-203. [39] van Kleunen, M., Dawson, W., Essl, F., et al., 2015 Global exchange and accumulation of non-native plants. Nature 525, 100-103. [40] van Kleunen, M., Pysek, P., Dawson, W., et al., 2019. The Global Naturalized Alien Flora (GloNAF) database. Ecology 100, e02542. [41] Webb, C.O., 2000. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am. Nat. 156, 145-155. [42] Webb, C.O., Ackerly, D.D., McPeek, M.A., et al., 2002. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475-505. [43] Yue, J., Li, R., 2021. Phylogenetic relatedness of woody angiosperm assemblages and its environmental determinants along a subtropical elevational gradient in China. Plant Divers. 43, 111-116. [44] Zengeya, T.A., Wilson, J.R., 2021. The status of biological invasions and their management in South Africa in 2019. South African National Biodiversity Institute, Kirstenbosch and DSI-NRF Centre of Excellence for Invasion Biology. [45] Zhang, J., Qian, H., 2023. U.Taxonstand: An R package for standardizing scientific names of plants and animals. Plant Divers. 45, 1-5. [46] Zhang, S.-B., Slik, J.W.F., Zhang, J.-L., et al. 2011. Spatial patterns of wood traits in China are controlled by phylogeny and the environment. Global Ecol. Biogeogr. 20, 241-250. [47] Zhang, A., Hu, X., Yao, S., et al., 2021a. Alien, naturalized and invasive plants in China. Plants 10, 2241. [48] Zhang, Y.-Z., Qian, L.-S., Spalink, D., et al., 2021b. Spatial phylogenetics of two topographic extremes of the Hengduan Mountains in southwestern China and its implications for biodiversity conservation. Plant Divers. 43, 181-191. [49] Zhou, Y.-D., Qian, H., Jin, Y., et al., 2023. Geographic patterns of taxonomic and phylogenetic ss-diversity of aquatic angiosperms in China. Plant Divers. https://doi.org/10.1016/j.pld.2022.12.006. |