[1] Accatino, F., Wiegand, K., Ward, et al., 2016. Trees, grass, and fire in humid savannas-The importance of life history traits and spatial processes. Ecol. Modell. 320, 135-144. https://doi.org/10.1016/j.ecolmodel.2015.09.014 [2] Anderson, M.J., 2001. Permutation tests for univariate or multivariate analysis of variance and regression. Can. J. Fish. Aquat. 58 (3), 626–639, https://doi.org/10.1139/f01-004. [3] Armenteras, D., Gonz``alez, T.M., Rios, et al., 2020. Fire in the ecosystems of northern south America: Advances in the ecology of tropical fires in Colombia, Ecuador and Peru. Caldasia 42, 1-16. https://doi.org/10.15446/caldasia.v42n1.77353 [4] Azocar, A., Rada, F., Garcia-Nunez, C., 2017. Aspectos ecofisiologicos para la conservacion de ecosistemas tropicales contrastantes. Bot. Sci. 65, 89-94. https://doi.org/10.17129/botsci.1599 [5] Bader, M.Y., Van Geloof, I., Rietkerk, M., 2007. High solar radiation hinders tree regeneration above the alpine treeline in northern Ecuador. Plant Ecol. 191, 33-45. https://doi.org/10.1007/s11258-006-9212-6 [6] Bilbao, B., Leal, A., Mendez, et al., 2009. The role of fire in the vegetation dynamics of upland savannas of the Venezuelan Guayana, in: Cochrane, M. A. (ed.), Tropical Fire Ecology. pp. 451-480. https://doi.org/10.1007/978-3-540-77381-8_16 [7] Bond, W.J., Keeley, J.E., 2005. Fire as a global “herbivore”: The ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 20, 387-394. https://doi.org/10.1016/j.tree.2005.04.025 [8] Bond, W.J., Midgley, J.J., 2001. Ecology of sprouting in woody plants: The persistence niche. Trends Ecol. Evol. 16, 45-51. https://doi.org/10.1016/S0169-5347(00)02033-4 [9] Borrelli, P., Armenteras, D., Panagos, P., et al., 2015. The implications of fire management in the Andean paaramo: a preliminary assessment using satellite remote sensing. Remote Sens. 7, 11061-11082. https://doi.org/10.3390/rs70911061 [10] CAR, 2016. Modificacion al Plan de Manejo Reserva Forestal Protectora de Bosque Oriental de Bogota. Corporacion Autonoma Regional de Cundinamarca. https://www.car.gov.co/vercontenido/173. [11] Cardenas-Arevalo, G., Vargas-Rios, O., 2008. Rasgos de historia de vida de especies en una comunidad vegetal alterada en un paramo humedo (Parque Nacional Natural Chingaza). Caldasia 30, 245-264. https://revistas.unal.edu.co/index.php/cal/article/view/39168 [12] Casanoves, F., Pla, L., Di Rienzo, J.A., 2011. Valoracion y analisis de la diversidad funcional y su relacion con los servicios ecosistemicos. Informe tecnico (CATIE): Numero 384. https://repositorio.catie.ac.cr/handle/11554/8190 [13] Castro-Bonilla, M.A., 2015. Estructura y diversidad floristica de los matorrales y frailejones del paramo de los valles de Anaime. Bachelor's thesis, Universidad del Tolima. http://repository.ut.edu.co/bitstream/001/2220/1/Trabajo%20de%20Grado.pdf [14] Cavero, R., Ederra, A., 1999. Evolución de la composición florística post-fuego en un carrascal de Navarra (España). Pirineos 153-154, 61–100, https://doi.org/10.3989/pirineos. [15] Clarke, K.R., 1993. Non-parametric multivariate analyses of changes in community structure. Austr. J. Ecol. 18, 117–143, https://doi.org/10.1111/j.1442-9993.1993.tb00438.x. [16] Clarke, P.J., Lawes, M.J., Midgley, J.J., et al., 2013. Resprouting as a key functional trait: How buds, protection and resources drive persistence after fire. New Phytol. 197, 19-35. https://doi.org/10.1111/nph.12001 [17] Cleef, A.M., 2008. Influencia humana en los paramos, in: Castaneda, J.P. (Ed.), Panorama y perspectivas sobre la gestion ambiental de los ecosistemas de paramo: memorias. Procuraduria delegada para asuntos ambientales y agrarios. pp. 26-33. https://hdl.handle.net/11245/1.297709 [18] Cleef, A.M., 1981. The vegetation of the paramos of the Colombian Cordillera Oriental. Inst. Syst. Bot. 481, 1-320. https://repository.naturalis.nl/pub/534752 [19] Cortes-Duque, J., Sarmiento Pinzon, C.E., 2013. Vision socioecosistemica de los paramos y la alta montana colombiana. Memorias del proceso de definicion de criterios para la delimitacion de paramos. Instituto de Investigacion de Recursos Biologicos Alexander von Humboldt. http://repository.humboldt.org.co/handle/20.500.11761/31458 [20] Cruz, M., Lasso, E., 2021. Insights into the functional ecology of paramo plants in Colombia. Biotropica 53, 1415-1431. https://doi.org/10.1111/btp.12992 [21] Cuatrecasas, J., 1958. Aspectos de la vegetación natural de Colombia. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 10 (40), 221–264. https://www.accefyn.com/revista/Volumen_10/40/221-264.pdf. [22] Di Pasquale, G., Marziano, M., Impagliazzo, S., et al., 2008. The Holocene treeline in the northern Andes (Ecuador): First evidence from soil charcoal. Palaeogeogr. Palaeoclimatol. Palaeoecol. 259, 17-34. https://doi.org/10.1016/j.palaeo.2006.12.016 [23] Diaz, S., Cabido, M., 1997. Plant functional types and ecosystem function in relation to global change. J. Veg. Sci. 8, 463-474. https://doi.org/10.2307/3237198 [24] Durbecq, A., Jaunatre, R., Buisson, E., et al., 2020. Identifying reference communities in ecological restoration: the use of environmental conditions driving vegetation composition. Restor Ecol.28, 1445-1453. https://doi:10.1111/rec.13232 [25] Espinoza, I.G., Franco-Gaviria, F., Castaneda, I., et al., 2022. Holocene fires and ecological novelty in the high Colombian Cordillera Oriental. Front. Ecol. Evol. 10, 895152. https://doi.org/10.3389/fevo.2022.895152 [26] Falster, D.S., Westoby, M., 2005. Tradeoffs between height growth rate, stem persistence and maximum height among plant species in a post-fire succession. Oikos 111, 57-66. https://doi.org/10.1111/j.0030-1299.2005.13383.x [27] Frantzen, N.M.L.H.F., Bouman, F., 1989. Dispersal and growth form patterns of some zonal paramo vegetation types. Acta Bot. Neerl. 38, 449-465. https://doi.org/10.1111/j.1438-8677.1989.tb01376.x [28] Gutierrez-Salazar, P., Ramsay, P.M., 2020. Physiognomic responses of paramo tussock grass to time since fire in northern Ecuador. Rev. Peru. Biol. 27, 205-214. https://doi.org/10.15381/rpb.v27i2.17876 [29] Hofstede, R.G., Rossenaar, A.J., 1995. Biomass of grazed, burned, and undisturbed Paramo Grasslands, Colombia. II. Root mass and aboveground:belowground ratio. Arct. Alp. Res. 27, 13-18. https://doi.org/10.2307/1552063 [30] Hofstede, R.G.M., 1995. The effects of grazing and burning on soil and plant nutrient concentrations in Colombian paramo grasslands. Plant Soil 173, 111-132. https://doi.org/10.1007/BF00155524 [31] Horn, S.P., 1989. Post fire vegetation development in the Costa Rican páramos. Madroño 36 (2), 93–114. http://www.jstor.org/stable/41424741. [32] Horn, S.P., 1990. Vegetation recovery after the 1976 páramo tire in Chirripó National. Rev. Biol. Trop. 38 (2), 267–275. https://revistas.ucr.ac.cr/index.php/rbt/article/view/25063. [33] Horn, S.P., Kappelle, M., 2009. Fire in the paramo ecosystems of Central and South America, in: Cochrane, M. A. (ed.), Tropical Fire Ecology. pp. 505-539. https://doi.org/10.1007/978-3-540-77381-8 [34] Huang, B., L’Heureux, M., Hu, Z.Z., et al., 2016. Ranking the strongest ENSO events while incorporating SST uncertainty. Geophys. Res. Lett. 43, 9165-9172. https://doi.org/10.1002/2016GL070888 [35] IDEAM., 2007. Estudio de la caracterizacion climatica de Bogota y cuenca alta del Rio Tunjuelo. Bogota D.C. Instituto de Hidrologia, Meteorologia y Estudios Ambientales. https://oab.ambientebogota.gov.co/?post_type=dlm_download&p=3678 [36] Kappelle, M., Horn, S.P., 2017. The paramo ecosystem of Costa Rica’s Highlands, in: Kappelle, M. (ed.), Costa Rican ecosystems. University of Chicago Press. pp. 492-524. https://doi.org/10.7208/chicago/9780226121642.003.0015 [37] Kauffman, J.B., 1991. Survival by sprouting following fire in tropical forests of the eastern Amazon. Biotropica 23, 219. https://doi.org/10.2307/2388198 [38] Keating, P.L., 2007. Fire ecology and conservation in the high tropical Andes: Observations from northern Ecuador. J. Lat. Am. Geogr. 6, 43-62. https://doi.org/10.1353/lag.2007.0003 [39] Keeley, J.E., Fotheringham, C.J., 2009. Role of fire in regeneration from seed, in: Fenner, M., (Ed.), Seeds: The ecology of regeneration in plant communities. Wallingford UK: Cabi Publishing. pp. 311-330. https://doi.org/10.1079/9780851994321.0311 [40] Keeley, J.E., Pausas, J.G., Rundel, P.W., et al., 2011. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 16, 406-411. https://doi.org/10.1016/j.tplants.2011.04.002 [41] Knox, K.J.E., Clarke, P.J., 2006. Fire season and intensity affect shrub recruitment in temperate sclerophyllous woodlands. Oecologia 149, 730-739. https://doi.org/10.1007/s00442-006-0480-6 [42] Kraft, N.J.B., Ackerly, D.D., 2014. Assembly of plant communities. J. Ecol. Environ. 8, 67-88. https://doi.org/10.1007/978-1-4614-7501-9_1 [43] Laegaard, S., 1992. Influence of fire in the grass paramo vegetation of Ecuador, in: Balslev, H., & J. L Luteyn (eds.), Paramo: An Andean ecosystem under human influence. Academic Press, London, UK. pp. 151-170 [44] Laliberte, E., Legendre, P., 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299-305. https://doi.org/10.1890/08-2244.1 [45] Lamont, B.B., He, T., Yan, Z., 2019. Evolutionary history of fire-stimulated resprouting, flowering, seed release and germination. Biol. Rev. 94, 903-928. https://doi.org/10.1111/brv.12483 [46] Lawes, M.J., Clarke, P.J., 2011. Ecology of plant resprouting: Populations to community responses in fire-prone ecosystems. Plant Ecol. 212, 1937-1943. https://doi.org/10.1007/s11258-011-9994-z [47] Lawes, M.J., Keith, D.A., Bradstock, R.A., 2016. Advances in understanding the influence of fire on the ecology and evolution of plants: a tribute to Peter J. Clarke. Plant Ecol. 217, 597-605. https://doi.org/10.1007/s11258-016-0625-6 [48] Li, K.T., 2012. Physiology and classification of fruits, in: Sinha, N.K., Sidhu, J., Barta, J., et al. (Eds.), Handbook of fruits and fruit processing. John Wiley & Sons. pp. 1-12. https://doi.org/10.1002/9781118352533.ch1 [49] Lippok, D., Beck, S.G., Renison, D., et al., 2013. Forest recovery of areas deforested by fire increases with elevation in the tropical Andes. For. Ecol. Manage. 295, 69-76. https://doi.org/10.1016/j.foreco.2013.01.011 [50] Londono, C., Cleef, A., Madrinan, S., 2014. Angiosperm flora and biogeography of the paramo region of Colombia, Northern Andes. Flora. 209, 81-87. https://doi.org/10.1016/j.flora.2013.11.006 [51] Mason, N.W.H., MacGillivray, K., Steel, J.B., et al., 2003. An index of functional diversity. J. Veg. Sci. 14, 571-578. https://doi.org/10.1111/j.1654-1103.2003.tb02184.x [52] McIntyre, S., Lavorel, S., Landsberg, J., Forbes, T.D.A., 1999. Disturbance response in vegetation - towards a global perspective on functional traits. J. Veg. Sci. 10, 621-630. https://doi.org/10.2307/3237077 [53] Melcher, I.M., Bouman, F., Cleef, A.M., 2000. Seed dispersal in paramo plants: Epizoochorous and hydrochorous taxa. Plant Biol. 2, 40-52. https://doi.org/10.1055/s-2000-9146 [54] Myers, R.L., 2006. Living with fire-sustaining ecosystems & livelihoods through integrated fire management. Global Fire Initiative. Nat. Conserv. 28. https://www.conservationgateway.org/Files/Pages/living-fire.aspx [55] Mouchet, M.A., Villéger, S., Mason, N.W., Mouillot, D., 2010. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Funct. Ecol. 24 (4), 867–876, https://doi.org/10.1111/j.1365-2435.2010.01695.x. [56] Muscarella, R., Uriarte, M., 2016. Do community-weighted mean functional traits reflect optimal strategies? Proc. R. Soc. B. 283, 20152434. https://doi.org/10.1098/rspb.2015.2434 [57] Naccarella, A., Morgan, J.W., Cutler, S.C., et al., 2020. Alpine treeline ecotone stasis in the face of recent climate change and disturbance by fire. PLoS One 15, e0231339. https://doi.org/10.1371/journal.pone.0231339 [58] Noble, I.R., Slatyer, R.O., 1980. The use of vital attributes to predict successional changes in plant communities subject to recurrent disturbances. Vegetatio. 43, 5-21. https://doi.org/10.1007/BF00121013 [59] Oksanen, J., Blanchet, F.G., Friendly, M., et al., 2020. Package “vegan” Title Community Ecology Package Version 2.5-7. R 2.5, 1–286. https://CRAN.R-project.org/package=vegan [60] Oosterhoorn, M., Kappelle, M., 2000. Vegetation structure and composition along an interior-edge-exterior gradient in a Costa Rican montane cloud forest. For. Ecol. Manage. 126, 291-307. https://doi.org/10.1016/S0378-1127(99)00101-2 [61] Otterstrom, S.M., Schwartz, M.W., Velazquez-Rocha, I., 2006. Responses to fire in selected tropical dry forest trees. Biotropica 38, 592-598. https://doi.org/10.1111/j.1744-7429.2006.00188.x [62] Pausas, J.G., 2020. Incendios forestales. Una vision desde la ecologia. Catarata-CSIC. Madrid. [63] Pausas, J.G., Bradstock, R.A., Keith, D.A., et al., 2004. Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85, 1085-1100. https://doi.org/10.1890/02-4094 [64] Pausas, J.G., Keeley, J.E., 2014. Evolutionary ecology of resprouting and seeding in fire-prone ecosystems. New Phytol. 204, 55-65. https://doi.org/10.1111/nph.12921 [65] Pausas, J.G., Lamont, B.B., Paula, S., et al., 2018. Unearthing belowground bud banks in fire-prone ecosystems. New Phytol. 217, 1435-1448. https://doi.org/10.1111/nph.14982 [66] Pausas, J.G., Pratt, R.B., Keeley, J.E., et al., 2016. Towards understanding resprouting at the global scale. New Phytol. 209, 945-954. https://doi.org/10.1111/nph.13644 [67] Pausas, J.G., Ribeiro, E., 2017. Fire and plant diversity at the global scale. Glob. Ecol. Biogeogr. 26, 889-897. https://doi.org/10.1111/geb.12596 [68] Peyre, G., Balslev, H., Font, X., 2018. Phytoregionalisation of the Andean paramo. PeerJ. 6, e4786. https://doi.org/10.7717/peerj.4786 [69] Premauer, J., Vargas, O., 2004. Patrones de diversidad en vegetacion pastoreada y quemada en un paramo humedo (Parque Natural Chingaza, Colombia). Ecotropicos 17, 52-66. https://www.academia.edu/download/3461068/articulo4.pdf [70] R Development Core Team., 2022. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/ [71] Rada, F., 2016. Functional diversity in tropical high elevation giant rosettes, In: Goldstein, G., Santiago, L. (eds), Tropical Tree Physiology. Tree Physiology, Springer, Cham. pp. 181-202. https://doi.org/10.1007/978-3-319-27422-5_8 [72] Rada, F., Azocar, A., Garcia-Nunez, C., 2019. Plant functional diversity in tropical Andean paramos. Plant Ecol. Divers. 12, 539-553. https://doi.org/10.1080/17550874.2019.1674396 [73] Ramirez Tixe, M.G., 2013. Diversidad floristica a diferente altitud en el ecosistema paramo en siete comunidades de la OSG UNOCANT. Bachelor's thesis, Escuela Superior Politecnica de Chimborazo. http://dspace.espoch.edu.ec/handle/123456789/2790 [74] Ramsay, P.M., 1999. Landscape mosaics in the High Andes: the role of fire in paramo communities. Nat. Cult. Landsc. Ecol. Exp. 3rd Millenn. Karolinum Press. Prague. https://www.academia.edu/download/49945566/Landscape_mosaics_in_the_High_Andes_the_20161028-8267-oeas39.pdf [75] Ramsay, P.M., Oxley, E.R.B., 1996. Fire temperatures and postfire plant community dynamics in Ecuadorian grass paramo. Vegetatio 124, 129-144. https://doi.org/10.1007/bf00045489 [76] Rangel, O. 2000. Colombia Diversidad Biótica III, la región de vida paramuna. 2000. 1 ed. Bogotá D.C. p. 902. https://repositorio.unal.edu.co/handle/unal/81936 [77] Reginato, M., Vasconcelos, T.N.C., Kriebel, R., et al., 2020. Is dispersal mode a driver of diversification and geographical distribution in the tropical plant family Melastomataceae? Mol. Phylogenet. Evol. 148, 106815. https://doi.org/10.1016/j.ympev.2020.106815 [78] Rodriguez, P., Pinilla, C., 2022. Relacion entre la severidad de quemado y la recuperacion de la vegetacion post- incendio en un bosque altoandino en el cerro Aguanoso, Cerros Orientales de Bogota. Bachelor's tesis. Universidad Distrital Francisco Jose de Caldas. [79] Rodriguez, W., Vargas, O., 2002. Estrategias de regeneracion postquema en areas de vegetacion altoandina tipo matorral. Perez-Arbelaezia 13, 9-32. https://perezarbelaezia.jbb.gov.co/index.php/pa/article/view/87 [80] Santamaria, C., Rodriguez, W., 2018. Identificacion de rasgos funcionales de especies vegetales del bosque altoandino y paramo relacionados con su respuesta regenerativa post-fuego. Bachelor's tesis. Universidad Distrital Francisco Jose de Caldas. https://repository.udistrital.edu.co/handle/11349/7614?show=full [81] Schulze, E.-D., Beck, E., Muller-Hohenstein, K., 2005. (Eds.), Plant Ecology. Springer Science & Business Media. [82] Sklenar, P., Ramsay, P.M., 2001. Diversity of zonal paramo plant communities in Ecuador. Divers. Distrib. 7, 113-124. Doi:10.1046/j.1472-4642.2001.00101.x [83] Sturm, H., Rangel, O., 1985. Ecologia de los paramos andinos: Una vision preliminar integrada. Univ. Nac. Colomb. 1, 292. https://repositorio.unal.edu.co/handle/unal/82357 [84] Tamme, R., Gotzenberger, L., Zobel, M., et al., 2014. Predicting species’ maximum dispersal distances from simple plant traits. Ecology. 95, 505-513. https://doi.org/10.1890/13-1000.1 [85] Torres, R.C., Giorgis, M.A., Trillo, C., et al., 2014. Post-fire recovery occurs overwhelmingly by resprouting in the Chaco Serrano Forest of Central Argentina. Austral Ecol. 39, 346-354. https://doi.org/10.1111/aec.12084 [86] Tovar, C., Melcher, I., Kusumoto, B., et al., 2020. Plant dispersal strategies of high tropical alpine communities across the Andes. J. Ecol. 108, 1910-1922. https://doi.org/10.1111/1365-2745.13416 [87] van der Hammen, T., Cleef, A.M., 1986. Development of the high Andean paramo flora and vegetation, in: F. & M.M., Vuilleumier (eds.), High Altitude Tropical Biogeography. New York, USA, pp. 153-201. [88] van der Hammen, T., Andrade, G., 2003. Estructura Ecologica Principal de Colombia: Primera aproximacion. Ministerio de Ambiente, Vivienda y Desarrollo Territorial, Instituto de Hidrologia, Meteorologia y Estudios Ambientales, Bogota, Colombia. https://observatorio.epacartagena.gov.co/estructura-ecologica-principal-de-colombia-primera-aproximacion/ [89] Vargas-Rios, O., 1997. Un modelo de sucesion-regeneracion de los paramos despues de quemas. Caldasia 19, 331-345. https://revistas.unal.edu.co/index.php/cal/article/view/17430 [90] Vargas, O., Perez-Martinez, L.V., 2014. (Eds.). Semillas de plantas de paramo: ecologia y metodos de germinacion aplicados a la restauracion ecologica. Universidad Nacional de Colombia. pp.17-63. [91] Weiher, E., Werf, A., Thompson, K., et al., 1999. Challenging Theophrastus: A common core list of plant traits for functional ecology. J. Veg. Sci. 10, 609-620. https://doi.org/10.2307/3237076 [92] Whelan, R.J., 1986. Seed dispersal in relation to fire, in: D.R., Murray (Ed.), Seed Dispersal. Academic Press, San Diego, pp. 237-271. https://doi.org/10.1016/b978-0-12-511900-9.50011-5 [93] White, S., 2013. Grass paramo as hunter-gatherer landscape. Holocene 23, 898-915. https://doi.org/10.1177/0959683612471987 [94] Zomer, M.A., Ramsay, P.M., 2020. Post-fire changes in plant growth form composition and diversity in Andean páramo grassland. Appl. Veg. Sci. 24, e12554, https://doi.org/10.1111/avsc.12554. |