Plant Diversity ›› 2023, Vol. 45 ›› Issue (04): 369-384.DOI: 10.1016/j.pld.2022.09.006
Karla J.P. Silva-Souzaa, Maíra G. Pivatoa, Vinícius C. Silvaa, Ricardo F. Haidarb, Alexandre F. Souzaa
收稿日期:
2022-05-10
修回日期:
2022-09-21
出版日期:
2023-07-25
发布日期:
2023-08-21
通讯作者:
Karla J.P. Silva-Souza,E-mail:kjuliete.bio@gmail.com
基金资助:
Karla J.P. Silva-Souzaa, Maíra G. Pivatoa, Vinícius C. Silvaa, Ricardo F. Haidarb, Alexandre F. Souzaa
Received:
2022-05-10
Revised:
2022-09-21
Online:
2023-07-25
Published:
2023-08-21
Contact:
Karla J.P. Silva-Souza,E-mail:kjuliete.bio@gmail.com
Supported by:
摘要: Clear and data-driven bioregionalizations can provide a framework to test hypotheses and base biodiversity conservation. Here we used occurrence and abundance data in combination with objective analytical methods to propose two bioregionalization schemes for tree species of the Cerrado and the Pantanal in South America. We also evaluated the contribution of three sets of determinants of the occurrence- and abundance-based subregions. We compiled data on tree species composition from 894 local assemblages based on species occurrences, and from 658 local assemblages based on species abundances. We used an unconstrained community-level modelling approach and clustering techniques to identify and map tree subregions for the occurrence and the abundance data sets, separately. Hierarchical clustering analyses were conducted to investigate floristic affinities between the subregions and to map broader floristic regions. We used multinomial logistic regression models, deviance partitioning, and rank-sum tests to assess the main subregion correlates. We identified 18 occurrence- and four abundance-based subregions in the Cerrado-Pantanal. The hierarchical classifications grouped the occurrence-based subregions into nine floristic zones and abundance-based subregions into two broad floristic zones. Variation in subregions were explained mainly by environmental factors and spatial structure in both occurrence and abundance data sets. The occurrence- and abundance-based subregions are complementary approaches to disentangle macroecological patterns and to plan conservation efforts in the Cerrado and the Pantanal. Our findings based on occurrence data revealed more complex and interdigitated boundaries between subregions of tree species than previously reported. The environment, historical stability, and human effects act in a synergetic way on the distribution of the subregions. Finally, the relevance of contemporary environmental factors to the subregion patterns we found alert us to the profound impact global warming may have on the spatial organization of the Cerrado-Pantanal tree flora.
Karla J.P. Silva-Souza, Maíra G. Pivato, Vinícius C. Silva, Ricardo F. Haidar, Alexandre F. Souza. New patterns of the tree beta diversity and its determinants in the largest savanna and wetland biomes of South America[J]. Plant Diversity, 2023, 45(04): 369-384.
Karla J.P. Silva-Souza, Maíra G. Pivato, Vinícius C. Silva, Ricardo F. Haidar, Alexandre F. Souza. New patterns of the tree beta diversity and its determinants in the largest savanna and wetland biomes of South America[J]. Plant Diversity, 2023, 45(04): 369-384.
[1] Abbas, A.W., Minallh, N., Ahmad, N., et al., 2016. K-means and ISODATA clustering algorithms for landcover classification using remote sensing. Sindh Univ.Res.J. 48, 315-318. [2] Abrahao, A., Costa, P. de B., Lambers, H., et al., 2019. Soil types select for plants with matching nutrient-acquisition and -use traits in hyperdiverse and severely nutrient-impoverished campos rupestres and cerrado in Central Brazil. J. Ecol. 107, 1302-1316. https://doi.org/10.1111/1365-2745.13111 [3] Amaral, A.G., Munhoz, C.B.R., Walter, B.M.T., et al., 2017. Richness pattern and phytogeography of the Cerrado herb-shrub flora and implications for conservation. J. Veg. Sci. 28, 848-858. https://doi.org/10.1111/jvs.12541 [4] Antonelli, A., Zizka, A., Antunes, F., et al., 2018. Amazonia is the primary source of Neotropical biodiversity. Proc. Natl. Acad. Sci. U. S. A. 115, 6034-6039. https://doi.org/10.1073/pnas.1713819115 [5] Ball, G.H., Hall, D.J., 1967. A clustering technique for summarizing multivariate data. J. Soc. Gen. Syst. Res. 12, 153-155. https://doi.org/10.1002/bs.3830120210 [6] Baselga, A., 2013. Separating the two components of abundance-based dissimilarity: Balanced changes in abundance vs. abundance gradients. Methods Ecol. Evol. 4, 552-557. https://doi.org/10.1111/2041-210X.12029 [7] Bauman, D., Drouet, T., Fortin, M.J., et al., 2018. Optimizing the choice of a spatial weighting matrix in eigenvector-based methods. Ecology 99, 2159-2166. https://doi.org/10.1002/ecy.2469 [8] Beck, J., Holloway, J.D., Schwanghart, W., 2013. Undersampling and the measurement of beta diversity. Methods Ecol. Evol. 4, 370-382. https://doi.org/10.1111/2041-210x.12023 [9] BFG, 2015. Growing knowledge: an overview of seed plant diversity in Brazil. Rodriguesia 66, 1085-1113. https://doi.org/10.1590/2175-7860201566411 [10] Bridgewater, S., Ratter, J.A., Ribeiro, J.F., 2004. Biogeographic patterns, b-diversity and dominance in the cerrado biome of Brazil. Biodivers. Conserv. 13, 2295-2317. https://doi.org/10.1023/B:BIOC.0000047903.37608.4c [11] Bueno, M.L., Dexter, K.G., Pennington, R.T., et al., 2018. The environmental triangle of the Cerrado Domain: ecological factors driving shifts in tree species composition between forests and savannas. J. Ecol. 106, 2109-2120. https://doi.org/10.1111/1365-2745.12969 [12] Bueno, M.L., Pennington, R.T., Dexter, K.G., et al., 2017. Effects of Quaternary climatic fluctuations on the distribution of Neotropical savanna tree species. Ecography 40, 403-414. https://doi.org/10.1111/ecog.01860 [13] Burnham, K., Anderson, D., 2002. Model selection and multi model inference: a practial information-theoretic approach, 2nd ed. Springer, New York. [14] Cantidio, L.S., Souza, A.F., 2019. Aridity, soil and biome stability influence plant ecoregions in the Atlantic Forest, a biodiversity hotspot in South America. Ecography 42, 1887-1898. https://doi.org/10.1111/ecog.04564 [15] Carnaval, A.C., Moritz, C., 2008. Historical climate modelling predicts patterns of current biodiversity in the brazilian Atlantic Forest. J. Biogeogr. 35, 1187-1201. https://doi.org/10.1111/j.1365-2699.2007.01870.x [16] Costa, G.C., Hampe, A., Ledru, M.-P.P., et al., 2017. Biome stability in South America over the last 30 kyr: inferences from long-term vegetation dynamics and habitat modelling. Glob. Ecol. Biogeogr. 27, 285-297. https://doi.org/10.1111/geb.12694 [17] Cunha, C.N., Junk, W.J., Leito-Filho, H.F., 2007. Woody vegetation in the Pantanal of Mato Grosso, Brazil: a preliminary typology. Amazoniana. [18] Dapporto, L., Fattorini, S., Vodǎ, R., et al., 2014. Biogeography of western Mediterranean butterflies: combining turnover and nestedness components of faunal dissimilarity. J. Biogeogr. 41, 1639-1650. https://doi.org/10.1111/jbi.12315 [19] Daru, B.H., Karunarathne, P., Schliep, K., 2020. phyloregion: R package for biogeographical regionalization and macroecology. Methods Ecol. Evol. 11, 1483-1491. https://doi.org/10.1111/2041-210X.13478 [20] Daru, B.H., van der Bank, M., Maurin, O., et al., 2016. A novel phylogenetic regionalization of phytogeographical zones of southern Africa reveals their hidden evolutionary affinities. J. Biogeogr. 43, 155-166. https://doi.org/10.1111/jbi.12619 [21] Caceres, M. De, Legendre, P., 2009. Associations between species and groups of sites: indices and statistical inference. Ecology 90, 3566-3574. https://doi.org/10.1890/08-1823.1 [22] Dexter, K.G., Pennington, R.T., Oliveira-Filho, A.T., et al., 2018. Inserting Tropical Dry Forests into the discussion on biome transitions in the tropics. Front. Ecol. Evol. 6, 1-7. https://doi.org/10.3389/fevo.2018.00104 [23] Dinerstein, E., Olson, D., Joshi, A., et al., 2017. An ecoregion-based approach to protecting half the terrestrial Realm. Bioscience 67, 534-545. https://doi.org/10.1093/biosci/bix014 [24] Embrapa, 2006. Native fruits from Central-Western Region of Brazil (Portuguese), 1st ed. Brasilia, DF. [25] Esquivel-Muelbert, A., Galbraith, D., Dexter, K.G., et al., 2017. Biogeographic distributions of neotropical trees reflect their directly measured drought tolerances. Sci. Rep. 7, 8334. https://doi.org/10.1038/s41598-017-08105-8 [26] ESRI, 2017. Environmental Systems Research Institute [ESRI]: Redlands, CA, USA. [27] Estrada, A., Arroyo, B., 2012. Occurrence vs abundance models: differences between species with varying aggregation patterns. Biol. Conserv. 152, 37-45. https://doi.org/10.1016/j.biocon.2012.03.031 [28] Felfili, J.M., Silva Junior, M.C.D., 1992. Floristic composition, phytosociology and comparison of cerrado and gallery forests at Fazenda Agua Limpa, Federal District, Brazil, in: Furley, P.A., J, P., Ratter, J.A. (Eds.), Nature and Dynamics of the Forest-Savanna Boundaries. Chapman & Hall, London, pp. 393-415. [29] Ferrier, S., Guisan, A., 2006. Spatial modelling of biodiversity at the community level. J. Appl. Ecol. 43, 393-404. https://doi.org/10.1111/j.1365-2664.2006.01149.x [30] Ferrier, S., Manion, G., Elith, J., Richardson, K., 2007. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers. Distrib. 13, 252-264. https://doi.org/10.1111/j.1472-4642.2007.00341.x [31] Fick, S.E., Hijmans, R.J., 2017. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302-4315. https://doi.org/10.1002/joc.5086 [32] Franco, A.C., Rossatto, D.R., Silva, L.C.R., et al., 2014. Cerrado vegetation and global change: the role of functional types, resource availability and disturbance in regulating plant community responses to rising CO2 levels and climate warming. Theor. Exp. Plant Physiol. 26, 19-38. https://doi.org/10.1007/s40626-014-0002-6 [33] Francoso, R.D., Brandao, R., Nogueira, C.C., et al., 2015. Habitat loss and the effectiveness of protected areas in the Cerrado biodiversity hotspot. Nat. Conserv. 13, 35-40. https://doi.org/10.1016/j.ncon.2015.04.001 [34] Francoso, R.D., Dexter, K.G., Machado, R.B., et al., 2020. Delimiting floristic biogeographic districts in the Cerrado and assessing their conservation status. Biodivers. Conserv. 29, 1477-1500. https://doi.org/10.1007/s10531-019-01819-3 [35] Francoso, R.D., Haidar, R.F., Machado, R.B., 2016. Tree species of South America central savanna: Endemism, marginal areas and the relationship with other biomes. Acta Bot. Brasilica 30, 78-86. https://doi.org/10.1590/0102-33062015abb0244 [36] Furley, P.A., 1999. The nature and diversity of Neotropical savanna vegetation with particular reference to the brazilian Cerrados. Glob. Ecol. Biogeogr. 8, 223-241. [37] Haidar, R.F., Dias, R.R., Pinto, J.R.R., 2013a. Mapping the phytoecological regions and forest inventory of the Tocantins state (Portuguese). Escala 1:100.000, Projeto de Desenvolvimento Regional Sustentavel. Superintendencia de Pesquisa e Zoneamento Ecologico-Economico, Diretoria de Zoneamento Ecologico-Economico (DZE), Palmas: Secretaria de planejamento e da modernizacao da gestao publica (Seplan). [38] Haidar, R.F., Maria, J., Fagg, F., et al., 2013b. Seasonal forests and ecotone areas in the state of Tocantins, Brazil: structure, classification and guidelines for conservation (Portuguese). Acta Amaz. 43, 261-290. https://doi.org/10.1590/S0044-59672013000300003 [39] Hattenschwiler, S., Aeschlimann, B., Couteaux, M.M., et al., 2008. High variation in foliage and leaf litter chemistry among 45 tree species of a neotropical rainforest community. New Phytol. 179, 165-175. https://doi.org/10.1111/j.1469-8137.2008.02438.x [40] Hoffmann, W. A., Adasme, R., Haridasan, M., et al., 2009. Tree topkill, not mortality, governs the dynamics of savanna-forest boundaries under frequent fire in central Brazil. Ecology 90, 1326-1337. https://doi.org/10.1890/08-0741.1 [41] Holt, B.G., Lessard, J.-P., Borregaard, M.K., et al., 2013. An update of Wallace’s zoogeographic regions of the world. Science 339, 74-78. https://doi.org/10.1126/science.1228282 [42] IBGE, 2019. Biomes and coastal-marine system of the Brazil: compatible with scale 1:250.000 (Portuguese), vol. 45. ed. Instituto Brasileiro de Geografia e Estatistica, Rio de Janeiro. [43] IBGE, 2012. Technical handbook of Brazilian vegetation (Portuguese), 2nd ed. Instituto Brasileiro de Geografia e Estatistica - IBGE, Rio de Janeiro. [44] Ioris, A.A.R., 2013. Rethinking Brazil’s Pantanal Wetland: beyond narrow development and conservation debates. J. Environ. Dev. 22, 239-260. https://doi.org/10.1177/1070496513493276 [45] IPCC, 2013. Climate Change 2013 - The physical science basis, in: Working group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change. Inter-governmental Panel on Climate Change, Geneva, p. 104. [46] IPHAN, 2020. Institute of National Historical and Artistic Heritage (Databases - Archaeological Heritage) Available at: http://portal.iphan.gov.br/[Accessed 15 July 2020]. [47] Junk, W.J., da Cunha, C.N., Wantzen, K.M., et al., 2006. Biodiversity and its conservation in the Pantanal of Mato Grosso, Brazil. Aquat. Sci. 68, 278-309. https://doi.org/10.1007/s00027-006-0851-4 [48] Kissling, W.D., Field, R., Bohning-Gaese, K., 2008. Spatial patterns of woody plant and bird diversity: functional relationships or environmental effects? Glob. Ecol. Biogeogr. 17, 327-339. https://doi.org/10.1111/j.1466-8238.2007.00379.x [49] Kreft, H., Jetz, W., 2010. A framework for delineating biogeographical regions based on species distributions. J. Biogeogr. 37, 2029-2053. https://doi.org/10.1111/j.1365-2699.2010.02375.x [50] Legendre, P., Legendre, L.F., 2012. Numerical ecology, 3rd ed. Elsevier, Amsterdam. [51] Leprieur, F., Oikonomou, A., 2014. The need for richness-independent measures of turnover when delineating biogeographical regions. J. Biogeogr. 41, 417-420. https://doi.org/10.1111/jbi.12266 [52] Levis, C., Costa, F.R.C., Bongers, F., et al., 2017. Persistent effects of pre-Columbian plant domestication on Amazonian Forest composition. Science 931, 925-931. https://doi.org/10.1126/science.aal0157 [53] Lewis, S.L., Edwards, D.P., Galbraith, D., 2015. Increasing human dominance of tropical forests. Science 349, 827-832. https://doi.org/10.1126/science.aaa9932 [54] Li, F., Zhang, X., 2017. Heat response of global vegetation biomes to ongoing climate warming based on remote sensing. Geosciences 7, 83. https://doi.org/10.3390/geosciences7030083 [55] Lima, M., Silva Junior, C.A., et al., 2020. Sugarcane: Brazilian public policies threaten the Amazon and Pantanal biomes. Perspect. Ecol. Conserv. 18, 210-212. https://doi.org/10.1016/j.pecon.2020.06.002 [56] Lima, R.D., 2021. Birds of the Caatinga revisited: the problem of enclaves within, but not of, the Caatinga. J. Arid Environ. 191, 104537. https://doi.org/10.1016/j.jaridenv.2021.104537 [57] Marques, E.Q., Hur, B., Junior, M., et al., 2020. Redefining the Cerrado - Amazonia transition: implications for conservation. Biodivers. Conserv. 29, 1501-1517. https://doi.org/10.1007/s10531-019-01720-z [58] McGlone, M.S., Buitenwerf, R., Richardson, S.J., 2016. The formation of the oceanic temperate forests of New Zealand. New Zeal. J. Bot. 54, 128-155. https://doi.org/10.1080/0028825X.2016.1158196 [59] Memarsadeghi, N., Mount, D.M., Netanyahu, N.S., et al., 2007. A fast implementation of the ISODATA clustering algorithm. Int. J. Comput. Geom. Appl. 17, 71-103. https://doi.org/10.1142/S0218195907002252 [60] Miranda, P.L.S., Oliveira-Filho, A.T., Pennington, R.T., et al., 2018. Using tree species inventories to map biomes and assess their climatic overlaps in lowland tropical South America. Glob. Ecol. Biogeogr. 27, 899-912. https://doi.org/10.1111/geb.12749 [61] Morrone, J.J., 2014. Biogeographical regionalisation of the neotropical region. Zootaxa 3782, 1-110. https://doi.org/10.11646/zootaxa.3782.1.1 [62] Moura, M.R., Argolo, A.J., Costa, H.C., 2016. Historical and contemporary correlates of snake biogeographical subregions in the Atlantic Forest hotspot. J. Biogeogr. 44, 640-650. https://doi.org/10.1111/jbi.12900 [63] Myers, N., Mittermeier, R.A., Mittermeier, C.G., et al., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853-858. https://doi.org/10.1038/35002501 [64] Neves, D.M., Dexter, K.G., Pennington, R.T., et al., 2015. Environmental and historical controls of floristic composition across the South American dry diagonal. J. Biogeogr. 42, 1566-1576. https://doi.org/10.1111/jbi.12529 [65] Nielsen, S.E., Johnson, C.J., Heard, D.C. et al., 2005. Can models of presence-absence be used to scale abundance? Two case studies considering extremes in life history. Ecography 28, 197-208. https://doi.org/10.1111/j.0906-7590.2005.04002.x [66] Oliveira-Filho, A.A.T., Fontes, M.A.L., 2000. Patterns of floristic differentiation among Atlantic Forests in Southeastern Brazil and the influence of climate. Biotropica 32, 793-810. https://doi.org/10.1646/0006-3606(2000)032 [67] Oliveira-Filho, A.T., 2009. Classification of vegetation physiognomies of tropical and subtropical cis-Andean South America: proposal of a practical and flexible new system or an additional injection of chaos? Rodriguésia 60, 237–258, https://doi.org/10.1590/2175-7860200960201. [68] Oliveira-Filho, A.T., Dexter, K.G., Pennington, R.T.et al., 2021. On the floristic identity of Amazonian vegetation types. Biotropica 53, 767-777. https://doi.org/10.1111/btp.12932 [69] Oliveira-Filho, A.T., Scolforo, J.R., 2008. Minas Gerais forest inventory: tree species of native flora (Portuguese), 1st ed. Lavras, MG: UFLA, Lavras, MG: UFLA. [70] Oliveira, O.F. V, Gondim, M.J.C., 2013. Medicinal plants used by the population of Caldas Novas, GO and popular knowledge about the faveira (Dimorphandra mollis Benth-Mimosoideae) (Portuguese). Rev. Bras. Agroecol. 8, 156-169. [71] Olson, D.M., Dinerstein, E., Wikramanayake, E.D., et al., 2001. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933-938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 [72] Pages, J., 2014. Factorial Analysis of Mixed Data, in: Pages, J. (Ed.), Multiple Factor Analysis by Example Using R. Chapman and Hall/CRC, Boca Raton, p. 12. https://doi.org/10.1201/b17700 [73] Pivello, V.R., 2011. The use of fire in the Cerrado and Amazonian rainforests of Brazil: past and present. Fire Ecol. 7, 24-39. https://doi.org/10.4996/fireecology.0701024 [74] Por, F.D., 1995. The Pantanal of Mato Grosso, Vol. 73. ed, MONOGRAPHIAE BIOLOGICAE. Springer-Science+Business Media, Dordrecht. https://doi.org/10.1007/978-94-011-0031-1 [75] Pott, A., Pott, V. J., 1994. Plants of the Pantanal (Portuguese). EMBRAPA-SPI, Brasilia. [76] Pott, A., Oliveira, A.K.M., Damasceno-Junior, G.A., Silva, J.S.V., 2011. Plant diversity of the Pantanal wetland. Brazilian J. Biol. 71, 265-273. https://doi.org/10.1590/s1519-69842011000200005 [77] Pott, A., Silva, J.S.V., 2015. Terrestrial and aquatic vegetation diversity of the Pantanal wetland, in: Bergier, I., M.L. Assine (Eds.), Dynamics of the Pantanal wetland in South America. The handbook of environmental chemistry. Springer, Switzerland, pp. 111-131. https://doi.org/10.1007/698_2015_352 [78] Pulliam, H.R., 2000. On the relationship between niche and distribution. Ecol. Lett. 3, 349-361. https://doi.org/10.1046/j.1461-0248.2000.00143.x [79] R-Core-Team, 2020. R: A language and environment for statistical computing. Version 4.0.2. [80] Ratter, J.A., Bridgewater, S., Ribeiro, J.F., 2003. Analysis of the floristic composition of the Brazilian Cerrado vegetation III: comparison of the woody vegetation of 376 Areas. Edinburgh J. Bot. 60, 57-109. https://doi.org/10.1017/s0960428603000064 [81] Ratter, J.A., Bridgewater, S., Ribeiro J.F., et al., 2011. Analysis of the floristic composition of the Brazilian Cerrado vegetation IV: presentation of a revised data-base of 367 areas. Conserv. Manag. Biodivers. Cerrado Biome. [82] Reflora, 2020. Brazilian Flora 2020 (Portuguese). Jard. Botanico do Rio Janeiro. Available at: http//floradobrasil.jbrj.gov.br/. [83] Reygondeau, G., 2019. Current and future biogeography of exploited marine exploited groups under climate change, in: Cisneros-Montemayor, A.M., Cheung, W.W.L., Ota, Y. (Eds.), Predicting future oceans. Elsevier, pp. 87-101. https://doi.org/10.1016/B978-0-12-817945-1.00009-5 [84] Saiter, F.Z., Brown, J.L., Thomas, W.W., et al., 2016. Environmental correlates of floristic regions and plant turnover in the Atlantic Forest hotspot. J. Biogeogr. 43, 2322-2331. https://doi.org/10.1111/jbi.12774 [85] Salvador, S., Chan, P., 2004. Determining the number of clusters/segments in hierarchical clustering/segmentation algorithms, in: Proceedings of the International Conference on Tools with Artificial Intelligence. pp. 576-584. https://doi.org/10.1109/ICTAI.2004.50 [86] Sano, E.E., Rodrigues, A.A., Martins, E.S., et al., 2019. Cerrado ecoregions: a spatial framework to assess and prioritize Brazilian savanna environmental diversity for conservation. J. Environ. Manage. 232, 818-828. https://doi.org/10.1016/j.jenvman.2018.11.108 [87] Santiago, L.S., Bonal, D., Guzman, M.E., et al., 2016. Drought survival strategies of tropical trees, in: Goldstein, G., Santiago, L. (Eds.), Tropical tree physiology. Springer, Cham, pp. 243-258. https://doi.org//10.1007/978-3-319-27422-5_11 [88] Santos, R.M., Oliveira-Filho, A.T., Eisenlohr, P. V., et al., 2012. Identity and relationships of the arboreal Caatinga among other floristic units of seasonally dry tropical forests (SDTFs) of north-eastern and Central Brazil. Ecol. Evol. 2, 409-428. https://doi.org/10.1002/ece3.91 [89] Sexton, J.P., Mcintyre, P.J., Angert, A.L., et al., 2009. Evolution and ecology of species range limits. Annu. Rev. Ecol. Syst. 40, 415-436. https://doi.org/10.1146/annurev.ecolsys.110308.120317 [90] Silva-Souza, K.J.P., Souza, A.F., 2020. Woody plant subregions of the Amazon Forest. J. Ecol. 108, 2321-2335. https://doi.org/10.1111/1365-2745.13406 [91] Silva, A.C., Souza, A.F., 2018a. Aridity drives plant biogeographical sub regions in the Caatinga, the largest tropical dry forest and woodland block in South America. PLoS One 13, e0196130. https://doi.org/10.1017/CBO9781107415324.004 [92] Silva, J.D.S.V., Abdon, M.M., 1998. Delimitation of the Brazilian Pantanal and its subregions (Portuguese). Pesqui. Agropecu. Bras. 33, 1703-1711. [93] Silva, J.L.A., Souza, A.F., Jardim, J.G., et al., 2015. Community assembly in harsh environments: the prevalence of ecological drift in the heath vegetation of South America. Ecosphere 6, 1-18. https://doi.org/10.1890/ES14-00548.1 [94] Silva, J.L.A., Souza, A.F., Santiago, L.S., 2019. Traits uncover quasi-neutral community assembly in a coastal heath vegetation. J. Plant Ecol. 12, 703-712. https://doi.org//10.1093/jpe/rtz007 [95] Silva, J.M.C., Bates, J.M., 2002. Biogeographic patterns and conservation in the South American Cerrado: A tropical savanna hotspot. Bioscience 52, 225. https://doi.org/10.1641/0006-3568(2002)052[0225:BPACIT]2.0.CO;2 [96] Silva, K.J.P., Souza, A.F., 2018b. Common species distribution and environmental determinants in South American coastal plains. Ecosphere 9, e02224. https://doi.org/10.1002/ecs2.2224 [97] Silveira, M.H.B., Mascarenhas, R., Cardoso, D., et al., 2019. Pleistocene climatic instability drove the historical distribution of forest islands in the northeastern Brazilian Atlantic Forest. Palaeogeogr. Palaeoclimatol. Palaeoecol. 527, 67-76. https://doi.org/10.1016/j.palaeo.2019.04.028 [98] Simon, M.F., Grether, R., De Queiroz, L.P., et al., 2009. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proc. Natl. Acad. Sci. U. S. A. 106, 20359-20364. https://doi.org/10.1073/pnas.0903410106 [99] Simon, M.F., Pennington, T., 2012. Evidence for adaptation to fire regimes in the tropical savannas of the Brazilian Cerrado. Int. J. Plant Sci. 173, 711-723. https://doi.org/10.1086/665973 [100] Smith, J.R., Letten, A.D., Ke, P.J., et al., 2018. A global test of ecoregions. Nat. Ecol. Evol. 2, 1889-1896. https://doi.org/10.1038/s41559-018-0709-x [101] Souza, L.A.S., Eisenlohr, P. V., 2020. Drivers of floristic variation in biogeographic transitions: insights from the ecotone between the largest biogeographic domains of South America. Acta Bot. Brasilica 34, 155-166. https://doi.org/10.1590/0102-33062019abb0057 [102] Stephens, L., Fuller, D., Boivin, N., et al., 2019. Archaeological assessment reveals Earth's early transformation through land use. Science 365, 897-902. https://doi.org/10.1126/science.aax1192 [103] ter Steege, H., Pitman, N.C., Sabatier, D., et al., 2013. Hyperdominance in the Amazonian tree flora. Science 342, 1243092. https://doi.org/10.1126/science.1243092 [104] Vellend, M., 2016. The theory of ecological communities. Princeton University Press, New Jersey. [105] Vellend, M., 2010. Conceptual synthesis in community ecology. Q. Rev. Biol. 85, 183-206. https://doi.org/10.1086/652373 [106] Venter, O., Sanderson, E.W., Magrach, A., et al., 2016. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 1-11. https://doi.org/10.1038/ncomms12558 [107] Vidal Jr, J.D., Souza, A.P., Koch, I., 2019. Impacts of landscape composition, marginality of distribution, soil fertility and climatic stability on the patterns of woody plant endemism in the Cerrado. Glob. Ecol. Biogeogr. 28, 904-916. https://doi.org/10.1111/geb.12901 [108] Vieira, L.T.A., Castro, A.A.J.F., Coutinho, J.M.C.P., et al., 2019. A biogeographic and evolutionary analysis of the flora of the North-eastern cerrado, Brazil. Plant Ecol. Divers. 12, 475-488. https://doi.org/10.1080/17550874.2019.1649311 [109] Vila Verde, G.M., Paula, J.R., Caneiro, D.M., 2003. Ethnobotanical survey of medicinal plants from the Cerrado used by the population of Mossamedes (GO) (Portuguese). Rev. Bras. Farmacogn. 13, 64-66. https://doi.org/10.1590/s0102-695x2003000300024 [110] Wackernagel, H., 2003. Ordinary Kriging, in: Multivariate Geostatistics. Springer, Berlin, Heidelberg, pp. 79-88. https://doi.org/10.1007/978-3-662-05294-5_11 [111] Wantzen, K.M., Da Cunha, C.N., Junk, W.J. et al., 2008. Towards a sustainable management concept for ecosystem services of the Pantanal wetland. Ecohydrol. Hydrobiol. 8, 115-138. https://doi.org/10.2478/v10104-009-0009-9 [112] Werneck, F.P., Nogueira, C., Colli, G.R., et al., 2012. Climatic stability in the Brazilian Cerrado: Implications for biogeographical connections of South American savannas, species richness and conservation in a biodiversity hotspot. J. Biogeogr. 39, 1695-1706. https://doi.org/10.1111/j.1365-2699.2012.02715.x [113] Williamson, M., 1978. The ordination of incidence data. J. Ecol. 66, 911-920. [114] Wittmann, F., Marques, M.C.M., Junior, G.D., et al., 2017. The Brazilian freshwater wetscape: Changes in tree community diversity and composition on climatic and geographic gradients. PLoS One 12, 1-18. https://doi.org/10.1371/journal.pone.0175003 |
[1] | Hong Qian, Jian Zhang, Meichen Jiang. Global patterns of taxonomic and phylogenetic diversity of flowering plants:Biodiversity hotspots and coldspots[J]. Plant Diversity, 2023, 45(03): 265-271. |
[2] | Lubing Liu, Jie Yang, Min Cao, Qinghai Song. Intraspecific trait variation of woody species reduced in a savanna community, southwest China[J]. Plant Diversity, 2022, 44(02): 163-169. |
[3] | Santosh Kumar Rana, Dong Luo, Hum Kala Rana, Shaotian Chen, Hang Sun. Molecular phylogeny, biogeography and character evolution of the montane genus Incarvillea Juss. (Bignoniaceae)[J]. Plant Diversity, 2021, 43(01): 1-14. |
[4] | Joseph O. Ondier, Daniel O. Okach, John C. Onyango, Dennis O. Otieno. Interactive influence of rainfall manipulation and livestock grazing on species diversity of the herbaceous layer community in a humid savannah in Kenya[J]. Plant Diversity, 2019, 41(03): 198-205. |
[5] | Leonie Monks, Sarah Barrett, Brett Beecham, Margaret Byrne, Alanna Chant, David Coates, J. Anne Cochrane, Andrew Crawford, Rebecca Dillon, Colin Yates. Recovery of threatened plant species and their habitats in the biodiversity hotspot of the Southwest Australian Floristic Region[J]. Plant Diversity, 2019, 41(02): 59-74. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||