Plant Diversity ›› 2021, Vol. 43 ›› Issue (01): 71-77.DOI: 10.1016/j.pld.2020.06.010
• Articles • Previous Articles Next Articles
Minghui Moua,c, Qijuan Wanga,c, Yanli Chena,c, Diqiu Yua, Ligang Chena,b
Received:
2020-02-12
Revised:
2020-06-11
Online:
2021-02-25
Published:
2021-03-25
Contact:
Diqiu Yu, Ligang Chen
Supported by:
Minghui Mou, Qijuan Wang, Yanli Chen, Diqiu Yu, Ligang Chen. Functional characterization of the Arabidopsis SERRATE under salt stress[J]. Plant Diversity, 2021, 43(01): 71-77.
Add to citation manager EndNote|Ris|BibTeX
尺度 Scale | MPD平均随机值 Mean MPD randomization | MPD平均实际测量值 Mean MPD analysis | 标准差 SD | 净相关指数 NRI | 零模型 Null model |
---|---|---|---|---|---|
10 m×10 m | 178.13 | 262.55 | 43.57 | -1.97 | 约束型 Constrained |
263.58 | 262.55 | 84.12 | 0.03 | 非约束型 Unconstrained | |
20 m×20 m | 196.36 | 288.74 | 41.59 | -2.20 | 约束型 Constrained |
286.36 | 288.74 | 71.55 | -0.01 | 非约束型 Unconstrained | |
25 m×25 m | 201.98 | 297.13 | 40.38 | -2.27 | 约束型 Constrained |
293.39 | 297.13 | 68.11 | -0.04 | 非约束型 Unconstrained |
Table 1 Mean pairwise phylogenetic distance (MPD) and net relatedness index (NRI) with different null models and different spatial scales in a 1-ha deciduous broad-leaved forest plot in Baotianman National Nature Reserve
尺度 Scale | MPD平均随机值 Mean MPD randomization | MPD平均实际测量值 Mean MPD analysis | 标准差 SD | 净相关指数 NRI | 零模型 Null model |
---|---|---|---|---|---|
10 m×10 m | 178.13 | 262.55 | 43.57 | -1.97 | 约束型 Constrained |
263.58 | 262.55 | 84.12 | 0.03 | 非约束型 Unconstrained | |
20 m×20 m | 196.36 | 288.74 | 41.59 | -2.20 | 约束型 Constrained |
286.36 | 288.74 | 71.55 | -0.01 | 非约束型 Unconstrained | |
25 m×25 m | 201.98 | 297.13 | 40.38 | -2.27 | 约束型 Constrained |
293.39 | 297.13 | 68.11 | -0.04 | 非约束型 Unconstrained |
尺度 Scale | MNND平均随机值 Mean MNND randomization | MNND平均实际测量值 Mean MNND analysis | 标准差 SD | 最近邻体指数 NTI | 零模型 Null model |
---|---|---|---|---|---|
10 m×10 m | 172.63 | 238.72 | 55.80 | -1.110 | 约束型 Constrained |
231.88 | 238.72 | 89.65 | 0.007 | 非约束型 Unconstrained | |
20 m×20 m | 141.09 | 199.81 | 49.40 | -1.170 | 约束型 Constrained |
188.50 | 199.81 | 74.82 | -0.024 | 非约束型 Unconstrained | |
25 m×25 m | 133.57 | 189.81 | 47.05 | -1.180 | 约束型 Constrained |
179.78 | 189.81 | 69.60 | -0.034 | 非约束型 Unconstrained |
Table 2 Mean nearest neighbor phylogenetic distance (MNND) and nearest taxon index (NTI) with different null models and different spatial scales in a 1-ha deciduous broad-leaved forest plot in Baotianman National Nature Reserve
尺度 Scale | MNND平均随机值 Mean MNND randomization | MNND平均实际测量值 Mean MNND analysis | 标准差 SD | 最近邻体指数 NTI | 零模型 Null model |
---|---|---|---|---|---|
10 m×10 m | 172.63 | 238.72 | 55.80 | -1.110 | 约束型 Constrained |
231.88 | 238.72 | 89.65 | 0.007 | 非约束型 Unconstrained | |
20 m×20 m | 141.09 | 199.81 | 49.40 | -1.170 | 约束型 Constrained |
188.50 | 199.81 | 74.82 | -0.024 | 非约束型 Unconstrained | |
25 m×25 m | 133.57 | 189.81 | 47.05 | -1.180 | 约束型 Constrained |
179.78 | 189.81 | 69.60 | -0.034 | 非约束型 Unconstrained |
尺度 Scale (m) | 模型 Model | χ2 | df | P |
---|---|---|---|---|
10 m×10 m | NRI vs. DBH | 30.19 | 2 | <0.0010 |
NTI vs. DBH | 34.50 | 2 | <0.0010 | |
20 m×20 m | NRI vs. DBH | 3.92 | 2 | 0.1409 |
NTI vs. DBH | 14.78 | 2 | 0.0006 | |
25 m×25 m | NRI vs. DBH | 7.15 | 2 | 0.0280 |
NTI vs. DBH | 12.64 | 2 | 0.0020 | |
径级 DBH class | ||||
A (1 cm≤DBH< 5 cm) | NRI vs. scale | 0.93 | 2 | 0.6384 |
NTI vs. scale | 6.51 | 2 | 0.0386 | |
B (5 cm≤DBH<10 cm) | NRI vs. scale | 3.69 | 2 | 0.1574 |
NTI vs. scale | 0.81 | 2 | 0.6671 | |
C (DBH≥10 cm) | NRI vs. scale | 5.85 | 2 | 0.0538 |
NTI vs. scale | 2.61 | 2 | 0.2712 |
Table 3 The relationship of phylogenetic structure and DBH sizes and sample sizes in a 1-ha deciduous broad-leaved forest plot in Baotianman National Nature Reserve
尺度 Scale (m) | 模型 Model | χ2 | df | P |
---|---|---|---|---|
10 m×10 m | NRI vs. DBH | 30.19 | 2 | <0.0010 |
NTI vs. DBH | 34.50 | 2 | <0.0010 | |
20 m×20 m | NRI vs. DBH | 3.92 | 2 | 0.1409 |
NTI vs. DBH | 14.78 | 2 | 0.0006 | |
25 m×25 m | NRI vs. DBH | 7.15 | 2 | 0.0280 |
NTI vs. DBH | 12.64 | 2 | 0.0020 | |
径级 DBH class | ||||
A (1 cm≤DBH< 5 cm) | NRI vs. scale | 0.93 | 2 | 0.6384 |
NTI vs. scale | 6.51 | 2 | 0.0386 | |
B (5 cm≤DBH<10 cm) | NRI vs. scale | 3.69 | 2 | 0.1574 |
NTI vs. scale | 0.81 | 2 | 0.6671 | |
C (DBH≥10 cm) | NRI vs. scale | 5.85 | 2 | 0.0538 |
NTI vs. scale | 2.61 | 2 | 0.2712 |
[1] | .APG III (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society, 161, 105-121. |
[2] | .Bin Y, Wang ZG, Wang ZM, Ye WH, Cao HL, Lian JY (2010) The effects of dispersal limitation and topographic heterogeneity on beta diversity and phylobetadiversity in a subtropical forest. Plant Ecology, 209, 237-256. |
[3] | .Cavender-Bares J, Keen A, Miles B (2006) Phylogenetic structure of floridian plant communities depends on taxonomic and spatial scale. Ecology, 87, S109-S122. |
[4] | .Chesson PL (2000) Mechanisms of maintenance of species diversity. Annual Review of Ecology, Evolution and Systematics, 31, 343-366. |
[5] | .Condit R (1995) Research in large, long-term tropical forest plots. Trends in Ecology and Evolution, 10, 18-22. |
[6] | .Connell JH (1971) On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In: Dynamics of Populations (eds Boer PJD, Gradwell GR), pp. 298-312. Centre for Agricultural Publishing and Documentation, Wageningen. |
[7] | .Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biological Conservation, 61, 1-10. |
[8] | .Faith DP (1994) Phylogenetic pattern and the quantification of organismal biodiversity. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 345, 45-58. |
[9] | .Gotelli NJ, Entsminger GL (2003) Swap algorithms in null model analysis. Ecology, 84, 532-535. |
[10] | .Grubb PJ (1977) The maintenance of species richness in plant communities: the importance of the regeneration niche. Biological Reviews, 52, 107-145. |
[11] | .Hubbell SP, Ahumada JA, Condit R, Foster RB (2001) Local neighborhood effects on long-term survival of individual trees in a Neotropical forest. Ecological Research, 16, 859-875. |
[12] | .Jansen PA, Visser MD, Wright SJ, Rutten G, Muller-Landau HC (2014) Negative density dependence of seed dispersal and seedling recruitment in a Neotropical palm. Ecology Letters, 17,1111-1120. |
[13] | .Janzen DH (1970) Herbivores and the number of tree species in tropical forests. The American Naturalist, 104, 501-528. |
[14] | .Kembel SW (2009) Disentangling niche and neutral influences on community assembly: assessing the performance of community phylogenetic structure tests. Ecology Letters, 12, 949-960. |
[15] | .Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26, 1463-1464. |
[16] | .Kembel SW, Hubbell SP (2006) The phylogenetic structure of a neotropical forest tree community. Ecology, 87, S86-S99. |
[17] | .Kraft NJB, Cornwell WK, Webb CO (2007) Trait evolution, community assembly, and the phylogenetic structure of ecological communities. The American Naturalist, 170, 271-283. |
[18] | .Liu XB, Liang M, Etienne RS, Wang Y, Staehelin C, Yu SX (2012) Experimental evidence for a phylogenetic Janzen-Connell effect in a subtropical forest. Ecology Letters, 15, 111-118. |
[19] | .Losos JB (1996) Phylogenetic perspectives on community ecology. Ecology, 77, 1344-1354. |
[20] | .Niu HY (牛红玉), Wang ZF (王峥峰), Lian JY (练琚愉), Ye WH (叶万辉), Shen H (沈浩) (2011) New progress in community assembly: community phylogenetic structure combining evolution and ecology. Biodiversity Science(生物多样性), 19, 275-283. (in Chinese with English abstract) |
[21] | .Ricklefs RE (2004) A comprehensive framework for global patterns in biodiversity. Ecology Letters, 7, 1-15. |
[22] | .Ricklefs RE (1987) Community diversity: relative roles of local and regional processes. Science, 235, 167-171. |
[23] | .Song CS (宋朝枢) (1999) Scientific Investigation in the Baotianman Nature Reserve (宝天曼自然保护区科学考察集). China Forestry Publishing House, Beijing. (in Chinese) |
[24] | .Stevens PF (2007) Angiosperm Phylogeny Website, version 8. .(accessed in October 2013 |
[25] | .Swenson NG, Enquist BJ, Pither J, Thompson J, Zimmerman JK (2006) The problem and promise of scale dependency in community phylogenetics. Ecology, 87, 2418-2424. |
[26] | .Swenson NG, Enquist BJ, Thompson J, Zimmerman JK (2007) The influence of spatial and size scale on phylogenetic relatedness in tropical forest communities. Ecology, 88, 1770-1780. |
[27] | .Taylor DR, Aarssen LW, Loehle C (1990) On the relationship between r/K selection and environmental carrying capacity: a new habitat templet for plant life history strategies. Oikos, 58, 239-250. |
[28] | .Tilman D (1982) Resource Competition and Community Structure. Princeton University Press, Princeton. 296pp. |
[29] | .Wang T (王婷), Ren SY (任思远), Yuan ZL (袁志良), Zhu Y (祝燕), Pan N (潘娜), Li LX (李鹿鑫), Ye YZ (叶永忠) (2014) Effects of density dependence on the spatial patterns of Quercus aliena var. acuteserrata trees in deciduous broad-leaved forest in the Baotianman Nature Reserve, central China. Biodiversity Science(生物多样性), 22, 449-457. (in Chinese with English abstract) |
[30] | .Webb CO (2000) Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. The American Naturalist, 156, 145-155. |
[31] | .Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics, 24, 2098-2100. |
[32] | .Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475-505. |
[33] | .Webb CO, Donoghue MJ (2005) Phylomatic: tree assembly for applied phylogenetics. Molecular Ecology Notes, 5, 181-183. |
[34] | .Webb CO, Gilbert GS, Donoghue MJ (2006) Phylodiversity-dependent seedling mortality, size structure, and disease in a Bornean rain forest. Ecology, 87, S123-S131. |
[35] | .Webb CO, Pitman NC (2002) Phylogenetic balance and ecological evenness. Systematic Biology, 51, 898-907. |
[36] | .Wikström N, Savolainen V, Chase MW (2001) Evolution of the angiosperms: calibrating the family tree. Proceedings of the Royal Society of London,Series B: Biological Sciences, 268, 2211-2220. |
[37] | .Wright JS (2002) Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia, 130, 1-14. |
[38] | .Yuan ZL (袁志良), Chen Y (陈云), Wei BL (韦博良), Zhang BQ (张斌强), Wang DY (汪东亚), Ye YZ (叶永忠) (2013) Species habitat correlation analysis in temperate-subtropical ecological transition zone. Acta Ecologica Sinica(生态学报), 33, 7819-7826. (in Chinese with English abstract) |
[1] |
Xiaodong Chen, Xiaoming Zhang, Aiqun Jia, Gang Xu, Hong Hu, Xiangyang H.
Jasmonate mediates saltinduced nicotine biosynthesis in tobacco (Nicotiana tabacum L.) [J]. Plant Diversity, 2016, 38(02): 146-152. |
[2] | JIANG Xue-Mei , HU Jin-Yao , QI Wen-Hua , CHEN Guang-Deng , XU Xiao. Different Physiological Responses of Male and Female Ginkgo biloba (Ginkgoaceae) Seedlings to Salt Stress [J]. Plant Diversity, 2009, 31(05): 447-453. |
[3] |
YUAN Ze-Ning, SHI Fu-Chen.
Effect of Salt Stress on Seed Germination and Embryo Growth of Spartina alterniflora (Gramineae) [J]. Plant Diversity, 2008, 30(02): 227-231. |
[4] | LIU Ai-Rong, ZHANG Yuan-Bing, CHEN Qing-Yu , ZHANG Cong-Yu , XIONG Zhou-Lin , HE Qing-Yuan , WANG Gui-Qin. Effects of Salt Stress on the Growth and the Photosynthesis in Alternanthera philoxeroides (Amaranthaceae) [J]. Plant Diversity, 2007, 29(01): 85-90. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||