Anderson, M.J., Gorley, R.N., Clarke, K.R., 2008. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. PRIMER-E, Plymouth. Bengtsson-Palme, J., Ryberg, M., Hartmann, M., et al., 2013. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol. Evol. 4, 914-919. https://doi:10.1111/2041-210X.12073. Caporaso, J.G., Kuczynski, J., Stombaugh, J., et al., 2010. QⅡME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335-336.https://doi.org/10.1038/nmeth.f.303. Chen, X., Liu, Z.J., Zhu, G.H., et al., 2009. Vol. 25 Orchidaceae. In: Wu, Z.Y., Raven, P.H., Hong, D.Y. (Eds.), Flora of China. Missouri Botanical Garden Press and Science Press, St. Louis and Beijing, pp. 315-325. Dearnaley, J., Martos, F., Selosse, M.-A., 2012. Orchid mycorrhizas: molecular ecology, physiology, evolution and conservation aspects. In: Esser, K. (Ed.), The Mycota Volume IX-Fungal Associations, second ed. Springer-Verlag, Berlin, pp. 207-230. Duffy, K.J., Waud, M., Schatz, B., et al., 2019. Latitudinal variation in mycorrhizal diversity associated with a European orchid. J. Biogeogr. 46, 968-980. https://doi.org/10.1111/jbi.13548. Edgar, R.C., 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996-998. https://doi.org/10.1038/Nmeth.2604. Edgar, R.C., Flyvbjerg, H., 2015. Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics 31, 3476-3482. https://doi.org/10.1093/bioinformatics/btv401. Gai, J.P., Tian, H., Yang, F.Y., et al., 2012. Arbuscular mycorrhizal fungal diversity along a Tibetan elevation gradient. Pedobiologia 55, 145-151. https://doi.org/10.1016/j.pedobi.2011.12.004. Gardes, M., White, T.J., Fortin, J.A., et al., 1991. Identification of indigenous and introduced symbiotic fungi in ectomycorrhizae by amplification of nuclear and mitochondrial ribosomal DNA. Can. J. Bot. 69, 180-190. https://doi.org/10.1139/b91-026. Gorzelak, M.A., Hambleton, S., Massicotte, H.B., 2012. Community structure of ericoid mycorrhizas and root-associated fungi of Vaccinium membranaceum across an elevation gradient in the Canadian Rocky Mountains. Fungal Ecol. 5, 36-45. https://doi.org/10.1016/j.funeco.2011.08.008. Gravendeel, B., Chase, M.W., De Vogel, E.F., et al., 2001. Molecular phylogeny of Coelogyne (Epidendroideae; Orchidaceae) based on plastid RFLPS, matK, and nuclear ribosomal its sequences: evidence for polyphyly. Am. J. Bot. 88, 1915-1927. https://doi.org/10.2307/3558367. Gravendeel, B., Smithson, A., Slik, F.J.W., et al., 2004. Epiphytism and pollinator specialization: drivers for orchid diversity? Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 359, 1523-1535. https://doi.org/10.1098/rstb.2004.1529. Hall, T.A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95-98. Jacquemyn, H., Waud, M., Brys, R., et al., 2017. Mycorrhizal associations and trophic modes in coexisting Orchids: an ecological continuum between auto- and mixotrophy. Front. Plant Sci. 8 https://doi.org/10.3389/fpls.2017.01497. Katoh, K., Standley, D.M., 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772-780. https://doi.org/10.1093/molbev/mst010. Kõljalg, U., Larsson, K.H., Abarenkov, K., et al., 2005. UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol. 166, 1063-1068. https://doi.org/10.1111/j.1469-8137.2005.01376.x. Lindahl, B.D., Nilsson, R.H., Tedersoo, L., et al., 2013. Fungal community analysis by high-throughput sequencing of amplified markers - a user's guide. New Phytol. 199, 288-299. https://doi.org/10.1111/nph.12243. Looney, B.P., Ryberg, M., Hampe, F., et al., 2016. Into and out of the tropics: global diversification patterns in a hyperdiverse clade of ectomycorrhizal fungi. Mol.Ecol. 25, 630-647. https://doi.org/10.1111/mec.13506. Martin, M., 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10-12. https://doi.org/10.14806/ej.17.1.200. Martos, F., Munoz, F., Pailler, T., et al., 2012. The role of epiphytism in architecture and evolutionary constraint within mycorrhizal networks of tropical orchids.Mol. Ecol. 21, 5098-5109. https://doi.org/10.1111/j.1365-294X.2012.05692.x. Nylander, J., 2004. MrModeltest 2.2. Computer Software Distributed by the University of Uppsala, Sweden. Evolutionary Biology Centre. Uppsala University, Uppsala. Oja, J., Kohout, P., Tedersoo, L., et al., 2015. Temporal patterns of orchid mycorrhizal fungi in meadows and forests as revealed by 454 pyrosequencing. New Phytol. 205, 1608-1618. https://doi.org/10.1111/nph.13223. Oksanen, J., Blanchet, F.G., Kindt, R., et al., 2013. Vegan: community ecology package. R Package Version 2.0-0. http://CRAN.R-project.org/package=vegan. Qin, J., Zhang, W., Ge, Z.-W., et al., 2019. Molecular identifications uncover diverse fungal symbionts of Pleione (Orchidaceae). Fungal Ecol. 37, 19-29. https://doi.org/10.1016/j.funeco.2018.10.003. Sathiyadash, K., Muthukumar, T., Murugan, S.B., et al., 2014. In vitro symbiotic seed germination of South Indian endemic orchid Coelogyne nervosa. Mycoscience 55, 183-189. https://doi.org/10.1016/j.myc.2013.08.005. Stamatakis, A., 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688-2690. https://doi.org/10.1093/bioinformatics/btl446. Taylor, D.L., McCormick, M.K., 2008. Internal transcribed spacer primers and sequences for improved characterization of basidiomycetous orchid mycorrhizas.New Phytol. 177, 1020-1033. https://doi.org/10.1111/j.1469-8137.2007.02320.x. Těšitelová, T., Kotilinek, M., Jersakova, J., et al., 2015. Two widespread green Neottia species (Orchidaceae) show mycorrhizal preference for Sebacinales in various habitats and ontogenetic stages. Mol. Ecol. 24, 1122-1134. https://doi.org/10.1111/mec.13088. Turenne, C.Y., Sanche, S.E., Hoban, D.J., et al., 2000. Rapid identification of fungi by using the ITS2 genetic region and an automated fluorescent capillary electrophoresis system (vol 37, p 1846, 1999). J. Clin. Microbiol. 38, 944-944. Wang, Z.H., Jiang, Y., Deane, D.C., et al., 2019. Effects of host phylogeny, habitat and spatial proximity on host specificity and diversity of pathogenic and mycorrhizal fungi in a subtropical forest. New Phytol. 223, 462-474. https://doi.org/10.1111/nph.15786. Waud, M., Busschaert, P., Lievens, B., et al., 2016. Specificity and localised distribution of mycorrhizal fungi in the soil may contribute to co-existence of orchid species. Fungal Ecol. 20, 155-165. https://doi.org/10.1016/j.funeco.2015.12.008. Waud, M., Busschaert, P., Ruyters, S., et al., 2014. Impact of primer choice on characterization of orchid mycorrhizal communities using 454 pyrosequencing.Mol. Ecol. Resour. 14, 679-699. https://doi.org/10.1111/1755-0998.12229. Weiß, M., Sýkorová, Z., Garnica, S., et al., 2011. Sebacinales everywhere: previously overlooked ubiquitous fungal endophytes. PloS One 6, e16793. https://doi.org/10.1371/journal.pone.0016793. Xing, X.-K., Gai, X.-G., Liu, Q., et al., 2015. Mycorrhizal fungal diversity and community composition in a lithophytic and epiphytic orchid. Mycorrhiza 25, 289-296. https://doi.org/10.1007/s00572-014-0612-5. Xing, X.-K., Jacquemyn, H., Gai, X.-G., et al., 2019. The impact of life form on the architecture of orchid mycorrhizal networks in tropical forest. Oikos 128, 1254-1264. https://doi.org/10.1111/oik.06363. Yukawa, T., Ogura-Tsujita, Y., Shefferson, R.P., et al., 2009. Mycorrhizal diversity in Apostasia (Orchidaceae) indicates the origin and evolution of orchid mycorrhiza.Am. J. Bot. 96, 1997-2009. https://doi.org/10.3732/ajb.0900101. Zhang, S.-B., Yang, Y.-J., Li, J.-W., et al., 2018. Physiological diversity of orchids. Plant Divers. 40, 196-208. https://doi.org/10.1016/j.pld.2018.06.003. Zhang, W., Hu, H., Zhang, S.-B., 2016. Divergent adaptive strategies by two cooccurring epiphytic orchids to water stress: escape or avoidance? Front. Plant Sci. 7, 588. https://doi.org/10.3389/fpls.2016.00588. |