Plant Diversity ›› 2022, Vol. 44 ›› Issue (05): 468-480.DOI: 10.1016/j.pld.2021.12.006
• Research paper • Previous Articles Next Articles
Boniface K. Ngaregaa,b,c,d, John M. Nzeia,b,c, Josphat K. Sainaa,b,c,d, Marwa Waseem A. Halmye, Jin-Ming Chena,b, Zhi-Zhong Lia,b
Received:
2021-05-08
Revised:
2021-12-28
Online:
2022-09-25
Published:
2022-10-14
Supported by:
Boniface K. Ngarega, John M. Nzei, Josphat K. Saina, Marwa Waseem A. Halmy, Jin-Ming Chen, Zhi-Zhong Li. Mapping the habitat suitability of Ottelia species in Africa[J]. Plant Diversity, 2022, 44(05): 468-480.
Add to citation manager EndNote|Ris|BibTeX
[1] Aiello L.M.E., Boria, R.A., Radosavljevic, A., et al., 2015. spThin:An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541-545 [2] Alahuhta, J., Antikainen, H., Hjort, J., et al., 2020. Current climate overrides historical effects on species richness and range size of freshwater plants in Europe and North America. J. Ecol. 108, 1262-1275 [3] Allouche, O., Tsoar, A., Kadmon, R., 2006. Assessing the accuracy of species distribution models:prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223-1232 [4] Austin, M.P. 2002. Spatial prediction of species distribution:an interface between ecological theory and statistical modeling. Ecol. Modell. 157, 101-118 [5] Bailie E.M., Hihon-Taylor C., Stuart SN, eds, 2004. IUCN Red List of Threatened Species:A Global Species Assessment. Cambridge (United Kingdom):IUCN [6] Barbet-Massin, M., Jiguet, F., Albert, C. H., et al., 2012. Selecting pseudo-absences for species distribution models:how, where and how many? Methods Ecol. Evol. 3, 327-338 [7] Butchart, S.H., Walpole, M., Collen, B., et al., 2010. Global biodiversity:indicators of recent declines. Science 328, 1164-1168 [8] Cave, L., Beekman, H.E., Weaver, J., 2003. Impact of Climate Change on Groundwater Recharge Estimation. In:Xu, Y. and Beekman, H.E.(eds.) Groundwater recharge estimation in southern Africa. UNESCO, Paris. 189-197 [9] Corlett, R.T. 2016. Plant diversity in a changing world:status, trends, and conservation needs. Plant Divers. 38, 10-16 [10] Cook C.D., Urmi-Konig K., 1984. A revision of the genus Ottelia (Hydrocharitaceae). 2. The species of Eurasia, Australasia and America. Aquat. Bot. 20, 131-177 [11] Cook, C.D., Symoens, J.J., Urmi-Konig, K., 1983. A revision of the genus Ottelia (Hydrocharitaceae) I. Generic considerations. Aquat. Bot. 18, 263-274 [12] Crossley, M.N., Dennison, W.C., Williams, R.R., et al., 2002. The interaction of water flow and nutrients on aquatic plant growth. Hydrobiologia 489, 63-70 [13] De Dominicis, F., Pallini, C., Annalisa, S., 2015. Rivers, Dams and Large-scale Hydraulic Works in Post-colonial Africa. Africa's Giants, 148-161 [14] De Wit, M., Stankiewicz, J., 2006. Changes in surface water supply across Africa with predicted climate change. Science 311, 1917-1921 [15] Duclos, T.R., DeLuca, W.V., King, D.I., 2019. Direct and indirect effects of climate on bird abundance along elevation gradients in the Northern Appalachian mountains. Divers. Distrib. 25, 1670-1683 [16] Elith, J., Leathwick, J.R., 2009. Species distribution models:ecological explanation and prediction across space and time. Ann. Rev. Ecol. Evol. Syst. 40, 677-697 [17] Elith, J., Phillips, S.J., Hastie, T., et al., 2011. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43-57 [18] Fan, X.R., Njeri, H.K., Li, W., et al., 2019. Abundant historical gene flow within and among river systems for populations of Ottelia acuminata var. jingxiensis, an endangered macrophyte from southwest China. Aquat. Bot. 157, 1-9 [19] Feeley, K. J., Silman, M. R., 2011. Keep collecting:accurate species distribution modeling requires more collections than previously thought. Divers. Distrib. 17, 1132-1140 [20] Ferrer-Gallego, P.P., Boisset, F., Simpson, D.A., 2016. Typification of the African endemic plant Ottelia exserta (Hydrocharitaceae). Kew Bull. 71, 32 [21] Fick, S. E., Hijmans, R. J., 2017. WorldClim 2:new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302-4315 [22] Garcia, G.J., Heino, J., Baastrup-Spohr, L., et al., 2020. Global patterns and determinants of lake macrophyte taxonomic, functional and phylogenetic beta diversity. Sci. Total Environ. 723, 138021 [23] Gent, P.R., Danabasoglu, G., Donner, L.J., et al., 2011. The community climate system model version 4. J. Clim. 24, 4973-4991 [24] Guisan, A., Thuiller, W., Zimmermann, N.E., 2017. Habitat Suitability and Distribution Models:With Applications in R; Cambridge University Press:Cambridge, UK. ISBN 0521765137 [25] Guo, J.L., Yu, Y.H., Zhang, J.W., et al., 2019. Conservation strategy for aquatic plants:endangered Ottelia acuminata (Hydrocharitaceae) as a case study. Biodivers. Conserv. 28, 1533-1548 [26] Hanski, I., Zurita, G.A., Bellocq, M.I., et al., 2013. Species-fragmented area relationship. Proc. Natl. Acad. Sci. U.S.A. 110, 12715-12720 [27] Hardin, G., 1960. The competitive exclusion principle. Science 131, 1292-1297 [28] Heikkinen, R. K., Luoto, M., Araujo, M. B., et al., 2006. Methods and uncertainties in bioclimatic envelope modeling under climate change. Prog. Phys. Geog. 30, 751-777 [29] Heneidy, S.Z., Halmy, M.W.A., Fakhry, A.M., et al., 2019. The status and potential distribution of Hydrocotyle umbellata L. and Salvinia auriculata Aubl. under climate change scenarios. Aquat. Ecol. 53, 509-528 [30] Hoekstra, J.M., Boucher, T.M., Ricketts, T.H., et al., 2005. Confronting a biome crisis:global disparities of habitat loss and protection. Ecol. Lett. 8, 23-29 [31] Iannella, M., D'Alessandro, P., Longo, S., et al., 2019. New records and potential distribution by Ecological Niche Modeling of Monoxia obesula in the Mediterranean area. Bull. Insectol. 71, 135-142 [32] Intergovernmental Panel on Climate Change. Part B:Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2014:Impacts, Adaptation, and Vulnerability; Barros, V.R., Field, C.B., Dokken, D.J., et al., Eds.; Cambridge University Press:Cambridge, UK; New York, NY, USA, 2014, 1-669 [33] Ito, Y., Tanaka, N., Barfod, A. S., et al., 2019. Molecular phylogenetic species delimitation in the aquatic genus Ottelia (Hydrocharitaceae) reveals cryptic diversity within a widespread species. J. Plant Res. 132, 335-344 [34] Kennedy, M.P., Lang, P., Grimaldo, J.T., et al., 2015. Environmental drivers of aquatic macrophyte communities in southern tropical African rivers:Zambia as a case study. Aquat. Bot. 124, 19-28 [35] Lewis, L.A., Berry, L., 1988. African environments and resources. Unwin Hayman Ltd., London, 404 [36] Li, Z.Z., Lu, M.X., Gichira, A.W., et al., 2019. Genetic diversity and population structure of Ottelia acuminata var. jingxiensis, an endangered endemic aquatic plant from southwest China. Aquat. Bot. 152, 20-26 [37] Li, Z.Z., Ngarega, B.K., Lehtonen, S., et al., 2020a. Cryptic diversity within the African aquatic plant Ottelia ulvifolia (Hydrocharitaceae) revealed by population genetic and phylogenetic analyses. J. Plant Res. 133, 372-381 [38] Li, Z.Z., Lehtonen, S., Martins, K., et al., 2020b. Phylogenomics of the aquatic plant genus Ottelia (Hydrocharitaceae):Implications for historical biogeography. Mol. Phylogenet. Evol. 152, 106939 [39] Liu, C., Newell, G., White, M., 2016. On the selection of thresholds for predicting species occurrence with presence-only data. Ecol. Evol. 6, 337-348 [40] McLaughlin, B.C., Ackerly, D.D., Klos, P.Z., et al., 2017. Hydrologic refugia, plants, and climate change. Glob. Change Biol. 23, 2941-2961 [41] McSweeney, C.F., Jones, R.G., Lee, R.W., et al., 2015. Selecting CMIP5 GCMs for downscaling over multiple regions. Clim. Dyn. 44, 3237-3260 [42] Misra, A.K. 2014. Climate change and challenges of water and food security. Int. J. Sustain. Built. Environ. 3, 153-165 [43] Monsarrat, S., Jarvie, S., Svenning, J.C., 2019. Anthropocene refugia:integrating history and predictive modelling to assess the space available for biodiversity in a human-dominated world. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 374, 20190219 [44] Muscarella, R., Galante, P.J., Soley G.M., et al., 2014. ENM eval:An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 5, 1198-1205 [45] Murphy, K., Efremov, A., Davidson, T.A., et al., 2019. World distribution, diversity and endemism of aquatic macrophytes. Aquat. Bot. 158, 103-127 [46] Ngarega, B.K., Gichira, A.W., Karichu, M.J., et al., 2021a. Genetic diversity and population structure of Ottelia ulvifolia (Hydrocharitaceae) from three freshwater ecoregions in Zambia. Aquat. Bot. 103412 [47] Ngarega, B.K., Masocha, V.F., Schneider, H. 2021b. Forecasting the effects of bioclimatic characteristics and climate change on the potential distribution of Colophospermum mopane in southern Africa using Maximum Entropy (Maxent). Ecol. Inform. 65, 101419 [48] Nicholson, S.E., 2000. The nature of rainfall variability over Africa on time scales of decades to millenia. Glob. Planet. Change 26, 137-158 [49] Nyong, A., Niang-Diop, I., 2006. Impacts of climate change in the tropics:the African experience. Avoiding dangerous climate change, Cambridge University Press:Cambridge, UK, 237 [50] Nzei, J.M., Ngarega, B.K., Mwanzia, V.M., et al., 2021. The past, current, and future distribution modeling of four water lilies (Nymphaea) in Africa indicates varying suitable habitats and distribution in climate change. Aquat. Bot. 103416 [51] Parmesan, C., Hanley, M.E., 2015. Plants and climate change:complexities and surprises. Ann. Bot. 116, 849-864 [52] Pennino, M.G., Coll, M., Albo-Puigserver, M., et al., 2020. Current and future influence of environmental factors on small pelagic fish distributions in the Northwestern Mediterranean Sea. Front. Mar. Sci. 7, 622 [53] Phillips, S.J., Anderson, R.P., Schapire, RE, 2006. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190, 231-259 [54] Pressey, R.L., Cabeza, M., Watts, M.E., et al., 2007. Conservation planning in a changing world. Trends Ecol. Evol. 22, 583-592 [55] Rissler, L.J., Apodaca, J.J., 2007. Adding more ecology into species delimitation:ecological niche models and phylogeography help define cryptic species in the black salamander (Aneides flavipunctatus). Syst. Biol. 56, 924-942 [56] Radosavljevic, A., and Anderson, R.P., 2014. Making better Maxent models of species distributions:complexity, overfitting and evaluation. J. Biogeogr. 41, 629-643 [57] R-Core-Team, 2019. R:A language and environment for statistical computing. Vienna, Austria:R Foundation for Statistical Computing [58] Schoener, T.W., 1974. Resource partitioning in ecological communities. Science 185, 27-39 [59] Serdeczny, O., Adams, S., Baarsch, F., et al., 2017. Climate change impacts in Sub-Saharan Africa:from physical changes to their social repercussions. Reg. Environ. Change. 17, 1585-1600 [60] Shepard, D., 2019. Global warming:Severe consequences for Africa:New report projects greater temperature increases. Africa Renewal, 32, 34-34 [61] Symoens J.J., 2009. Hydrocharitaceae. Flora Zambesiaca 12, 31-32 [62] van Proosdij, A.S., Sosef, M.S., Wieringa, J.J., et al., 2016. Minimum required number of specimen records to develop accurate species distribution models. Ecography 39, 542-552 [63] van Vuuren, D.P., Edmonds, J., Kainuma, M., et al., 2011. The representative concentration pathways:an overview. Clim. Change 109, 5 [64] Walck, J.L., Hidayati, S.N., Dixon, K.W., et al., 2011. Climate change and plant regeneration from seed. Glob. Change Biol. 17, 2145-2161 [65] Wan, J.N., Mbari, N.J., Wang, S.W., et al., 2021. Modeling impacts of climate change on the potential distribution of six endemic baobab species in Madagascar. Plant Divers. 43, 117-124 [66] Warren, D.L., Glor, R.E., Turelli, M., 2008. Environmental niche equivalency versus conservatism:quantitative approaches to niche evolution. Evolution 62, 2868-2883 [67] Warren, D.L., Glor, R.E., Turelli, M., 2010. ENMTools:a toolbox for comparative studies of environmental niche models. Ecography 33, 607-611 [68] Warren, D.L., Seifert, S.N., 2011. Ecological niche modeling in Maxent:The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335-342 [69] Wenger, S.J., Olden, J.D., 2012. Assessing transferability of ecological models:an underappreciated aspect of statistical validation. Methods Ecol. Evol. 3, 260-267 [70] Wiens, J.J., Graham, C.H., 2005. Niche conservatism:integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519-539 [71] Wilson, K.A., McBride, M.F., Bode, M., et al., 2006. Prioritizing global conservation efforts. Nature 440, 337-340 [72] Zhang, P., Kuramae, A., Van Leeuwen, C.H., et al., 2020. Interactive effects of rising temperature and nutrient enrichment on aquatic plant growth, stoichiometry, and palatability. Front. Plant Sci. 11, 58 [73] Zhai, S.H., Yin, G.S., Yang, X.H., 2018. Population genetics of the endangered and wild edible plant Ottelia acuminata in southwestern China using novel SSR markers. Biochem. Genet. 56, 235-254 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||