Plant Diversity ›› 2023, Vol. 45 ›› Issue (04): 446-455.DOI: 10.1016/j.pld.2023.03.006
• Articles • Previous Articles Next Articles
Yue-Wen Xua, Lu Suna, Rong Maa,b, Yong-Qian Gaoc, Hang Suna, Bo Songa
Received:
2023-01-31
Revised:
2023-03-15
Online:
2023-07-25
Published:
2023-08-21
Contact:
Hang Sun,E-mail:sunhang@mail.kib.ac.cn;Bo Song,E-mail:songbo@mail.kib.ac.cn
Supported by:
Yue-Wen Xu, Lu Sun, Rong Ma, Yong-Qian Gao, Hang Sun, Bo Song. Does pollinator dependence decrease along elevational gradients?[J]. Plant Diversity, 2023, 45(04): 446-455.
Add to citation manager EndNote|Ris|BibTeX
[1] Abdusalam, A., Li, Q.-J., 2019. Elevation-related variation in the population characteristics of distylous Primula nivalis affects female fitness and inbreeding depression. Plant Divers. 41, 250-257. [2] Armbruster, P., Reed, D.H., 2005. Inbreeding depression in benign and stressful environments. Heredity 95, 235-242. [3] Arroyo, M.T.K., Armesto, J.J., Primack, R.I.C.H.A.R.D., 1983. Tendencias altitudinales y latitudinales en mecanismos de polinizacion en la zona andina de los Andes templados de Sudamerica. Rev. Chil. Hist. Nat. 56, 159-180. [4] Arroyo, M.T.K., Munoz, M.S., Henriquez, C., Till-Bottraud, I., et al., 2006. Erratic pollination, high selfing levels and their correlates and consequences in an altitudinally widespread above-tree-line species in the high Andes of Chile. Acta Oecol. 30, 248-257. [5] Arroyo, M.T.K., Primack, R., Armesto, J., 1982. Community studies in pollination ecology in the high temperate Andes of central Chile. I. Pollination mechanisms and altitudinal variation. Am. J. Bot. 69, 82-97. [6] Ashman, T.L., 2004. Flower longevity. In: Nooden, L.D. (Ed.), Plant Cell Death Process. Elsevier, London, U.K, pp. 349–362. [7] Barrett, S.C., 2002. The evolution of plant sexual diversity. Nat. Rev. Genet. 3, 274-284. [8] Bennett, J.M., Steets, J.A., Burns, J.H., et al., 2020. Land use and pollinator dependency drives global patterns of pollen limitation in the Anthropocene. Nat. Commun. 11, 1-6. [9] Bingham, R.A., Orthner, A.R., 1998. Efficient pollination of alpine plants. Nature 391, 238-239. [10] Bingham, R.A., Ranker, T.A., 2000. Genetic diversity in alpine and foothill populations of Campanula rotundifolia (Campanulaceae). Int. J. Plant Sci. 161, 403-411. [11] Burkle, L.A., Alarcon, R., 2011. The future of plant-pollinator diversity: understanding interaction networks across time, space, and global change. Am. J. Bot. 98, 528-538. [12] Burkner, P.C., 2017. brms: An R package for Bayesian multilevel models using Stan. J Stat Softw. 80, 1-28. [13] Busch, J.W., Delph, L.F., 2012. The relative importance of reproductive assurance and automatic selection as hypotheses for the evolution of self-fertilization. Ann. Bot. 109, 553-562. [14] Chen, J.-G., Zhang, Y.-Z., Zhang, H.-R., et al., 2021. The positive effects of the alpine cushion plant Arenaria polytrichoides on insect dynamics are determined by both physical and biotic factors. Sci. Total Environ. 762, 143091. [15] Chen, S.-C., Tamme, R., Thomson, F.J., et al., 2019. Seeds tend to disperse further in the tropics. Ecol. Lett. 22, 954-961. [16] Cook, S.M., Bartlet, E., Murray, D.A., et al., 2002. The role of pollen odour in the attraction of pollen beetles to oilseed rape flowers. Entomol. Exp. Appl. 104, 43-50. [17] Devlin, R.M., Witham, F.H., 1983. Plant Physiology, 4th edn. Willard Grant, Boston. [18] Duan, Y.-W., He, Y.-P., Liu, J.-Q., 2005. Reproductive ecology of the Qinghai-Tibet Plateau endemic Gentiana straminea (Gentianaceae), a hermaphrodite perennial characterized by herkogamy and dichogamy. Acta Oecol. 27, 225-232. [19] Duan, Y.-W., He, Y.-P., Zhang, T.-F., et al., 2007a. Delayed selfing in an alpine species Gentianopsis barbata. Chin. J. Plant Ecol. 31, 110. [20] Duan, Y.-W., Zhang, T.-F., Liu, J.-Q., 2007b. Pollination biology of Anisodus tanguticus (Solanaceae). Biodivers. Sci. 15, 584-591. [21] Eckert C.G., Samis K.E., Dart S., 2006. Reproductive assurance and the evolution of uniparental reproduction in flowering plants. In: Harder, L.D., Barrett, S.C.H. (Eds.), Ecology and evolution of flowers. Oxford University Press, U.K., pp. 183-203. [22] Eriksen, B., Molau, U., Svensson, M., 1993. Reproductive strategies in two arctic Pedicularis species (Scrophulariaceae). Ecography 16, 154-166. [23] Foster, O., Caruso, C.M., 2022. Evidence for a cost of increased floral longevity in female and hermaphrodite Lobelia siphilitica (Campanulaceae). Int. J. Plant Sci. 183, 186-192. [24] Galman, A., Abdala-Roberts, L., Zhang, S., et al., 2018. A global analysis of elevational gradients in leaf herbivory and its underlying drivers: Effects of plant growth form, leaf habit and climatic correlates. J. Ecol. 106, 413-421. [25] Garcia-Camacho, R., Totland, OE., 2009. Pollen limitation in the alpine: a meta-analysis. Arct. Antarct. Alp. Res. 41, 103-111. [26] Goodwillie C., Kalisz S., Eckert C.G., 2005. The evolutionary enigma of mixed mating system in plants: occurrence, theoretical explanations, and empirical evidence. Annu. Rev. Ecol. Evol. Syst. 36, 47-79. [27] Grossenbacher, D.L., Brandvain, Y., Auld, J.R., et al., 2017. Self-compatibility is over-represented on islands. New Phytol. 215, 469-478. [28] Guerra, T.J., Galetto, L., Silva, W.R., 2014. Nectar secretion dynamic links pollinator behavior to consequences for plant reproductive success in the ornithophilous mistletoe Psittacanthus robustus. Plant Biol. 16, 956-966. [29] Gugerli, F., 1998. Effect of elevation on sexual reproduction in alpine populations of Saxifraga oppositifolia (Saxifragaceae). Oecologia 114, 60-66. [30] Haig, D., Westoby, M., 1988. On limits to seed production. Am. Nat. 131, 757-759. [31] Herlihy, C.R., Eckert, C.G., 2005. Evolution of self-fertilization at geographical range margins? A comparison of demographic, floral, and mating system variables in central vs. peripheral populations of Aquilegia canadensis (Ranunculaceae). Am. J. Bot. 92, 744-751. [32] Ishii, H.S., Sakai, S., 2000. Optimal timing of corolla abscission: experimental study on Erythronium japonicum (Liliaceae). Funct. Ecol. 14, 122-128. [33] Jiang, X.-F., Xie Y.-P., 2020. Meta-analysis reveals severe pollen limitation for the flowering plants growing in East Himalaya-Hengduan Mountains region. BMC Ecology 20, 1-9. [34] Jin, Y., Qian, H., 2022. V.PhyloMaker2: An updated and enlarged R package that can generate very large phylogenies for vascular plants. Plant Divers. 44, 335-339. [35] Jin, Y., Qian, H., 2023. U.PhyloMaker: An R package that can generate large phylogenetic trees for plants and animals. Plant Divers. https://doi.org/10.1016/j.pld.2022.12.007. [36] Kalisz, S., Vogler, D.W., Hanley, K.M., 2004. Context-dependent autonomous self-fertilization yields reproductive assurance and mixed mating. Nature 430, 884-887. [37] Kembel, S., 2010. An introduction to the picante package. Available from http://picante.r-forge.r-project.org/picante-intro.pdf. [38] Knight, T. M., Steets, J. A., Vamosi, J. C., et al., 2005. Pollen limitation of plant reproduction: pattern and process. Annu. Rev. Ecol. Evol. Syst. 36, 467-497. [39] Korner, C., 2003. Alpine Plant Life. Springer Verlag, Berlin. [40] Korner, C., 2007. The use of ‘altitude’ in ecological research. Trends. Ecol. Evol. 22, 569-574. [41] Korner, C., Paulsen, J., 2009. Exploring and explaining mountain biodiversity. In: Spehn, E.M., Korner, C. (Eds.), Data mining for global trends in mountain biodiversity. CRC Press, Boca Raton, Florida, U.S.A. [42] Koski, M.H., Galloway, L.F., Busch, J.W., 2019. Pollen limitation and autonomous selfing ability interact to shape variation in outcrossing rate across a species range. Am. J. Bot. 106, 1240-1247. [43] Koski, M.H., Grossenbacher, D.L., Busch, J.W., et al., 2017. A geographic cline in the ability to self-fertilize is unrelated to the pollination environment. Ecology 98, 2930-2939. [44] Kuriya, S., Hattori, M., Nagano, Y., et al., 2015. Altitudinal flower size variation correlates with local pollinator size in a bumblebee-pollinated herb, Prunella vulgaris L. (Lamiaceae). J. Evol. Biol. 28, 1761-1769. [45] Lara-Romero, C., Segui, J., Perez-Delgado, A., et al., 2019. Beta diversity and specialization in plant-pollinator networks along an elevational gradient. J. Biogeogr. 46, 1598-1610. [46] Larson, B.M., Barrett, S.C., 2000. A comparative analysis of pollen limitation in flowering plants. Biol. J. Linn. Soc. 69, 503-520. [47] Li, D.-F., Yan, X.-C., Lin, Y., et al., 2021. Do flowers removed of either nectar or pollen attract fewer bumblebee pollinators? An experimental test in Impatiens oxyanthera. AoB Plants 13, plab029. [48] Li, M.-R., Sui, Y., Wang, X.-N., et al., 2022. High outcrossing rates in a self-compatible and highly aggregated host-generalist mistletoe. Mol. Ecol. 31, 6489-6504. [49] Liu, J., Milne, R.I., Zhu, G.-F., et al., 2022. Name and scale matter: clarifying the geography of Tibetan Plateau and adjacent mountain regions. Global Planet. Change 215, 103893. [50] Ma, Y.-M., Cha, Y.-P., Tong, Z.-L., et al., 2023. The nonlinear change in pollinator assemblages and self-mating syndromes of Primula atrodentata along elevation gradients. J. Plant Ecol. 16, rtac109, https://doi.org/10.1093/jpe/rtac109. [51] Maglianesi, M.A., Bluthgen, N., Bohning-Gaese, K. et al., 2015. Functional structure and specialization in three tropical plant-hummingbird interaction networks across an elevational gradient in Costa Rica. Ecography 38, 1119-1128. [52] Medan, D., Montaldo, N.H., Devoto, M., et al., 2002. Plant-pollinator relationships at two altitudes in the Andes of Mendoza, Argentina. Arct. Antarct. Alp. Res. 34, 233-241. [53] Melathopoulos, A.P., Cutler, G.C., Tyedmers, P., 2015. Where is the value in valuing pollination ecosystem services to agriculture? Ecol. Econ. 109, 59-70. [54] Millard, J., Outhwaite, C.L., Kinnersley, R., et al., 2021. Global effects of land-use intensity on local pollinator biodiversity. Nat. Commun. 12, 1-11. [55] Miller-Struttmann, N., Miller, Z., Galen, C., 2022. Climate driven disruption of transitional alpine bumble bee communities. Global Change Biol. 28, 6165-6179. [56] Moeller, D.A., Briscoe Runquist, R.D., Moe, A.M., et al., 2017. Global biogeography of mating system variation in seed plants. Ecol. Lett. 20, 375-384. [57] Molau, U., 1993. Relationships between flowering phenology and life history strategies in tundra plants. Arct. Alp. Res. 25, 391-402. [58] Moles, A.T., Bonser, S.P., Poore, A.G., et al., 2011a. Assessing the evidence for latitudinal gradients in plant defence and herbivory. Funct. Ecol. 25, 380-388. [59] Moles, A.T., Laffan, S.W., Keighery, M., et al., 2020. A hairy situation: Plant species in warm, sunny places are more likely to have pubescent leaves. J. Biogeogr. 47, 1934-1944. [60] Moles, A.T., Wallis, I.R., Foley, W.J., et al., 2011b. Putting plant resistance traits on the map: a test of the idea that plants are better defended at lower latitudes. New Phytol. 191, 777-788. [61] Moles, A.T., Warton, D.I., Warman, L., et al., 2009. Global patterns in plant height. J. Ecol. 97, 923-932. [62] Morgan, M.T., Wilson, W.G., 2005. Self-fertilization and the escape from pollen limitation in variable pollination environments. Evolution 59, 1143-1148. [63] Myers, N., Mittermeier, R.A., Mittermeier, C.G., et al., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853-858. [64] Olesen, J.M., Jordano, P., 2002. Geographic patterns in plant-pollinator mutualistic networks. Ecology 83, 2416-2424. [65] Ollerton, J., Winfree, R., Tarrant, S., 2011. How many flowering plants are pollinated by animals? Oikos 120, 321-326. [66] Pan, B.-T., Gao, H.-S., Li, B.-Y., et al., 2004. Step-like landforms and uplift of the Qinghai-Xizang Plateau. Quat. Sci. 24, 50-57. [67] Peng, D.-L., Niu, Y., Song, B., et al., 2015. Woolly and overlapping leaves dampen temperature fluctuations in reproductive organ of an alpine Himalayan forb. J. Plant Ecol. 8, 159-165. [68] Peng, D.-L., Ou, X.-K., Xu, B., et al., 2014. Plant sexual systems correlated with morphological traits: Reflecting reproductive strategies of alpine plants. J. Syst. Evol. 52: 368-377. [69] Peng, D.-L., Song, B., Yang, Y., et al., 2016. Overlapping Leaves Covering Flowers in the Alpine Species Eriophyton wallichii (Lamiaceae): Key Driving Factors and Their Potential Impact on Pollination. PLoS One 11, e0164177. [70] Peng, D.-L., Zhang, Z.-Q., Niu, Y., et al., 2012. Advances in the studies of reproductive strategies of alpine plants. Biodivers. Sci. 20: 286-299. [71] Post, E., Forchhammer, M.C., Bret-Harte, M.S., et al., 2009. Ecological dynamics across the Arctic associated with recent climate change. Science 325, 1355-1358. [72] Potts, S.G., Biesmeijer, J.C., Kremen, C., et al., 2010. Global pollinator declines: Trends, impacts and drivers. Trends. Ecol. Evol. 25, 345-353. [73] Primack, R.B., 1985. Longevity of individual flowers. Annu. Rev. Ecol. Syst. 16, 15-37. [74] Pyke, G.H., 2016. Floral nectar: pollinator attraction or manipulation? Trends. Ecol. Evol. 31, 339-341. [75] Qian, H., Zhang, J., Jiang, M., 2023. Global patterns of taxonomic and phylogenetic diversity of flowering plants: Biodiversity hotspots and coldspots. Plant Divers. https://doi.org/10.1016/j.pld.2023.01.009. [76] R Core Team, 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. [77] Raduski, A.R., Haney, E.B., Igic, B., 2012. The expression of self-incompatibility in angiosperms is bimodal. Evolution 66, 1275-1283. [78] Randle, A.M., Slyder, J.B., Kalisz, S., 2009. Can differences in autonomous selfing ability explain differences in range size among sister-taxa pairs of Collinsia (Plantaginaceae)? An extension of Baker's Law. New Phytol. 183, 618-629. [79] Ratto, F., Simmons, B.I., Spake, R., et al., 2018. Global importance of vertebrate pollinators for plant reproductive success: a meta-analysis. Front. Ecol. Environ. 16, 82-90. [80] Revell, L.J., 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217-223. [81] Rodger, J.G., Bennett, J.M., Razanajatovo, M., et al., 2021. Widespread vulnerability of flowering plant seed production to pollinator declines. Sci. Adv. 7, eabd3524. [82] Sakai, S., Metelmann, S., Toquenaga, Y. et al., 2016. Geographical variation in the heterogeneity of mutualistic networks. Roy. Soc. Open Sci. 3, 150630. [83] Schemske, D.W., Mittelbach, G.G., Cornell, H.V., et al., 2009. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst. 40, 245. [84] Scherrer, D., Korner, C., 2011. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J. Biogeogr. 38, 406-416. [85] Schoen, D.J., Brown, A.H., 1991. Whole-and part-flower self-pollination in Glycine clandestina and G. argyrea and the evolution of autogamy. Evolution 45, 1651-1664. [86] Smith, S.A., Brown, J.W., 2018. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302-314. [87] Song, B., Chen, G., Stocklin, J., et al., 2014. A new pollinating seed-consuming mutualism between Rheum nobile and a fly fungus gnat, Bradysia sp., involving pollinator attraction by a specific floral compound. New Phytol. 203, 109-1118. [88] Song, B., Stocklin, J., Peng, D.-L., et al., 2015. The bracts of the alpine ‘glasshouse’ plant Rheum alexandrae (Polygonaceae) enhance reproductive fitness of its pollinating seed-consuming mutualist. Bot. J. Linn. Soc. 179, 349-359. [89] Song, B., Sun, L., Barrett, S.C., et al., 2022. Global analysis of floral longevity reveals latitudinal gradients and biotic and abiotic correlates. New Phytol. 235, 2054-2065. [90] Song, B., Sun, L., Lev-Yadun, S., et al., 2020. Plants are more likely to be spiny at mid-elevations in the Qinghai-Tibetan Plateau, south-western China. J. Biogeogr. 47, 250-260. [91] Song, B., Zhang, Z.-Q., Stocklin, J., et al., 2013. Multifunctional bracts enhance plant fitness during flowering and seed development in Rheum nobile (Polygonaceae), a giant herb endemic to the high Himalayas. Oecologia 172, 359-370. [92] Stratton, D.A., 1989. Longevity of individual flowers in a Costa Rican cloud forest: ecological correlates and phylogenetic constraints. Biotropica 21, 308-318. [93] Sun, H., Niu, Y., Chen, Y.-S., et al. 2014. Survival and reproduction of plant species in the Qinghai-Tibet Plateau. J. Syst. Evol. 52, 378-396. [94] Sun, H., Zhang, J.-W., Deng, T., et al., 2017. Origins and evolution of plant diversity in the Hengduan Mountains, China. Plant Divers. 39, 161-166. [95] The State Council Information Office of the People’s Republic of China, 2018. Ecological Progress on the Qinghai-Tibet Plateau. http://english.www.gov.cn/archive/white_paper/2018/07/18/content_281476227186598.htm [96] Thomann, M., Imbert, E., Devaux, C., et al., 2013. Flowering plants under global pollinator decline. Trends Plant Sci. 18, 353-359. [97] Tong, Z.-Y., Wu, L.-Y., Huang, S.-Q., 2021. Reproductive strategies of animal-pollinated plants on high mountains: A review of studies from the “Third Pole”. J. Syst. Evol. 59, 1159-1169. [98] Torang, P., Vikstrom, L., Wunder, J., et al., 2017. Evolution of the selfing syndrome: Anther orientation and herkogamy together determine reproductive assurance in a self-compatible plant. Evolution 71, 2206-2218. [99] Totland, OE., 2001. Environment-dependent pollen limitation and selection on floral traits in an alpine species. Ecology 82, 2233-2244. [100] Trunschke, J., Stocklin, J., 2017. Plasticity of flower longevity in alpine plants is increased in populations from high elevation compared to low elevation populations. Alp. Bot. 127, 41-51. [101] Turcotte, M.M., Thomsen, C.J., Broadhead, G.T., et al., 2014. Percentage leaf herbivory across vascular plant species. Ecology 95, 788-788. [102] Vamosi, S.M., Queenborough, S.A., 2010. Breeding systems and phylogenetic diversity of seed plants along a large-scale elevational gradient. J. Biogeogr. 37, 465-476. [103] Wirth, L.R., Graf, R., Gugerli, F., et al., 2010. Lower selfing rate at higher altitudes in the alpine plant Eritrichium nanum (Boraginaceae). Am. J. Bot. 97, 899-901. [104] Xiong, Y.-Z., Fang, Q., Huang, S.-Q., 2013. Pollinator scarcity drives the shift to delayed selfing in Himalayan mayapple Podophyllum hexandrum (Berberidaceae). AoB Plants. 5, plt037. [105] Zanne, A.E., Tank, D.C., Cornwell, et al., 2014. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89-92. [106] Zhang, D.-C., Ye, J.-X., Sun, H. 2016a. Quantitative approaches to identify floristic units and centres of species endemism in the Qinghai-Tibetan Plateau, south-western China. J. Biogeogr. 43, 2465-2476. [107] Zhang J., Liu B., Liu S., et al., 2022. helixcn/plantlist: Looking Up the Status of Plant Scientific Names based on The Plant List Database, Searching the Chinese Names and Making checklists of plants. R package version 0.8.0. Available from https://github.com/helixcn/plantlist/. [108] Zhang, S., Ai, H.-L., Yu, W.-B., et al., 2010. Flower heliotropism of Anemone rivularis (Ranunculaceae) in the Himalayas: Effects on floral temperature and reproductive fitness. Plant Ecol. 209, 301-312. [109] Zhang, S., Zhang, Y.-X., Ma, K.-M., 2016b. Latitudinal variation in herbivory: hemispheric asymmetries and the role of climatic drivers. J. Ecol. 104, 1089-1095. [110] Zhang, Y., Li, B., Zheng, D., 2002. A discussion on the boundary and area of the Tibetan Plateau in China. Geogr. Res. 21, 1-8. [111] Zhang, Z.-Q., Kress, W.J., Xie, W.-J., et al., 2011. Reproductive biology of two Himalayan alpine gingers (Roscoea spp., Zingiberaceae) in China: pollination syndrome and compensatory floral mechanisms. Plant Biol. 13, 582-589. [112] Zhang, Z.-Q., Li, Q.-J., 2008. Autonomous selfing provides reproductive assurance in an alpine ginger Roscoea schneideriana (Zingiberaceae). Ann. Bot. 102, 531-538. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||