[1] Avise, J.C., Robinson, T.J., 2008. Hemiplasy: A new term in the lexicon of phylogenetics Syst. Biol. 57, 503-507. [2] Benaglia, T., Chauveau, D., Hunter, D., et al., 2009. mixtools: An R package for analyzing finite mixture models. J. Stat. Softw. 32, 1-29. [3] Bouckaert, R.R., 2010. Densitree: making sense of sets of phylogenetic trees. Bioinformatics 10, 10. [4] Chaudhuri, P., Marron, J.S., 1999. SiZer for exploration of structures in curves. J. Am. Stat. Assoc. 94, 907-823. [5] Cheon, S., Zhang, J.Z., Park, C., 2020. Is phylotranscriptomics as reliable as phylogenomics? Mol. Biol. Evol. 37, 3672-3683. [6] Copetti, D., Alberto, Burquez, Bustamante, E., et al., 2017. Extensive gene-tree discordance and hemiplasy shaped the genomes of North American columnar cacti. Proc. Natl. Acad. Sci. U.S.A. 114, 12003-12008. [7] Degnan, J.H., Rosenberg, N.A., 2009. Gene-tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol. Evol. 24, 332-340. [8] Feng, S., Ru, D.F., Sun, Y.S., et al., 2019. Trans-lineage polymorphism and nonbifurcating diversification of the genus Picea. New Phytol. 222, 576-587. [9] Friesen, N., Fritsch, R.M., Blattner, F.R., 2006. Phylogeny and new intrageneric classification of Allium (Alliaceae) based on nuclear ribosomal DNA ITS sequences. Aliso 22, 372-395. [10] Friesen, N., Fritsch, R.M., Pollner, S., et al., 2000. Molecular and morphological evidence for an origin of the aberrant genus Milula within Himalayan species of Allium (Alliacae). Mol. Phylogenet. Evol. 17, 209-218. [11] Grabherr, M.G., Haas, B.J., Yassour, M., et al., 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644-652. [12] Guan, C.F., Liu, S.Y., Wang, M.K., et al., 2019. Comparative transcriptomic analysis reveals genetic divergence and domestication genes in Diospyros. BMC Plant Biol. 19, 227. [13] Guerreroa, R.F., Hahna, M.W., 2018. Quantifying the risk of hemiplasy in phylogenetic inference. Proc. Natl. Acad. Sci. U.S.A. 115, 12787-12792. [14] Guindon, O., 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of phyml 3.0. Syst. Biol. 59, 307-321. [15] Hahn, M.W., Nakhleh, L., 2016. Irrational exuberance for resolved species trees. Evolution 70, 7-17. [16] Huang. Y., Niu, B.F., Gao, Y., et al., 2010. CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 26, 680-682. [17] Huang, D.Q., Yang, J.T., Zhou, C.J., et al., 2014. Phylogenetic reappraisal of Allium subgenus Cyathophora (Amaryllidaceae) and related taxa, with a proposal of two new sections. J. Plant Res. 127, 275-286. [18] Hutchinson, J., 1959. The Families of Flowering Plants. Clarendon Press, Oxford. [19] Huerta-Cepas, J., Forslund, K., Pedro, C.L., et al., 2017. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol. Biol. Evol. 34, 2115-2122. [20] Katoh, K., Standley, D.M., 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772-780. [21] Kearse, M., Moir, R., Wilson, A., et al., 2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647-1649. [22] Knowles, L.L., Kubatko, L.S. (Eds.), 2010. Estimating species trees: practical and theoretical aspects. Wiley-Blackwell, Hoboken, NJ, USA. [23] Krause, K., 1930. Liliaceae. In: Engler, A. (Ed.) Die naturlichen Pflanzenfamilien. Engelmann, Leipzig, pp. 227-386. [24] Li, L., Stoeckert Jr., C.J., Roos, D.S., 2003. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13, 2178-2189. [25] Li, L.L., Zhao, Y., Chang, R.H., et al., 2018. Expression and bioinformatics analysis of PLC gene family in Lm Type Ricinus communis inflorescence. Mol. Plant Breed. 16, 6604-6615. [26] Li, M.J., Tan, J.B., Xie, D.F., et al., 2016. Revisiting the evolutionary events in Allium subgenus Cyathophora (Amaryllidaceae): insights into the effect of the Hengduan Mountains Region (HMR) uplift and Quaternary climatic fluctuations to the environmental changes in the Qinghai-Tibet Plateau. Mol. Phylogenet. Evol. 94, 802-813. [27] Li, M.J., Liu, J.Q., Guo, X.L., et al., 2019a. Taxonomic revision of Allium cyathophorum (Amaryllidaceae). Phytotaxa 415, 240-246. [28] Li, M.J., Xie, D.F., Xie, C., et al., 2019b. A phytogeographic divide along the 500 mm isohyet in the Qinghai-Tibet Plateau: insights from the phylogeographic evidence of Chinese Alliums (Amaryllidaceae). Front. Plant Sci. 10, 149. [29] Li, M.J., Yu, H.X., Guo, X.L., et al., 2021. Out of the Qinghai-Tibetan Plateau and rapid radiation across Eurasia for Allium section Daghestanica (Amaryllidaceae). AoB Plants 13, 3. [30] Li, W.W., 2012. Functional analysis of SST family in sexual reproduction of Arabidopsis thaliana. Wuhan University Press, China. [31] Liu, L., Yu, L.L., Edwards, S.V., 2010a. A maximum pseudo-likelihood approach for estimating species trees under the coalescent model. BMC Evol. Biol. 10, 302. [32] Liu, L., Yu, L.L., Edwards, S.V., 2010b. PHYBASE: an R package for phylogenetic analysis. Bioinformatics 26, 962-963. [33] Loytynoja, A., Goldman, N., 2008. Phylogeny-aware gap placement prevents errors in sequence alignment and evolutionary analysis. Science 320, 1632-1635. [34] Maddison, W.P., 1997. Gene trees in species trees. Syst. Biol. 46, 523- 536. [35] Mendes, F.K., Hahn, Y., Hahn, M.W., 2016. Gene-tree discordance can generate patterns of diminishing convergence over time. Mol. Biol. Evol. 33, 3299-3307. [36] Ossowski, S., Schneeberger, K., Lucas-Lledo, J.I., et al., 2010. The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327, 92-94. [37] Pamilo, P., Nei, M., 1988. Relationships between gene trees and species trees. Mol. Biol. Evol. 5, 568-583. [38] Paradis, E., Schliep, K., 2019. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 35, 526-528. [39] Pease, J.B., Haak, D.C., Hahn, M.W., et al., 2016. Phylogenomics reveals three sources of adaptive variation during a rapid radiation. PLoS Biology 14, e1002379. [40] Revell, L.J., 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217-223. [41] Robinson, T.J., Anne, R., 2011. Examination of hemiplasy, homoplasy and phylogenetic discordance in chromosomal evolution of the Bovidae. Syst. Biol. 60, 439-450. [42] Sonnhammer, E.L., Ostlund, G., 2015. InParanoid 8: orthology analysis between 273 proteomes, mostly eukaryotic. Nucleic Acids Res. 43, D234-D239. [43] Stamatakis, A., 2014. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 30, 1312-1313. [44] Stearn, W.T., 1960. Allium and Milula in the Central and Eastern Nepal Himalaya. Bulletin of the British Museum, Natural History (Botany) 2, 159-191. [45] Sun, X.D., Zhu, S.Y., Li, N.Y., et al., 2020. A chromosome-level genome assembly of garlic (Allium sativum) provides insights into genome evolution and allicin biosynthesis. Mol. Plant. 13, 1328-1339. [46] Takhtajan, A.L., 1987. Systema Magnoliophytorum. Nauka, Leningrad. [47] Than, C., Ruths, D., Nakhleh, L., 2008. PhyloNet: A software package for analyzing and reconstructing reticulate evolutionary relationships. BMC Bioinformatics 9, 322. [48] Traub, H.P., 1972. The order Alliales. Plant Life 28, 129-132. [49] Wake, D.B., Wake, M.H., Specht, C.D., 2011. Homoplasy: from detecting pattern to determining process and mechanism of evolution. Science 331, 1032-1035. [50] Wang, K., Lenstra, J.A., Liu, L., et al., 2018. Incomplete lineage sorting rather than hybridization explains the inconsistent phylogeny of the wisent. Commun. Biol. 1, 169. [51] Wang, X.Y., Li, Y.S., Liang, Q.L., et al., 2015. Contrasting responses to Pleistocene climate changes: a case study of two sister species Allium cyathophorum and A. spicateta (Amaryllidaceae) distributed in the eastern and western Qinghai-Tibet Plateau. Ecol. Evol. 5, 1513-1524. [52] Wu, M., Kostyun, J.L., Hahn, M.W., et al., 2018. Dissecting the basis of novel trait evolution in a radiation with widespread phylogenetic discordance. Mol. Ecol. 27, 3301-3316. [53] Yang, Z., Wong, W.S., Nielsen, R., 2005. Bayes empirical bayes inference of amino acid sites under positive selection. Mol. Biol. Evol. 22, 1107-1118. [54] Yang, Z.H., 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586-1591. [55] Yu, G., Wang, L.G., Han, Y., et al., 2012. Clusterprofiler: an R package for comparing biological themes among gene clusters. Omics 16, 284-287. [56] Yu, Y., Barnett, R.M., Nakhleh, L., 2013. Parsimonious inference of hybridization in the presence of incomplete lineage sorting. Syst. Biol. 62, 738-751. [57] Yu, Y., Blair, C., He, X.J., 2020. RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. Mol. Biol. Evol. 37, 604-606. [58] Zhang, J.Z., 2000. Rates of conservative and radical nonsynonymous nucleotide substitutions in mammalian nuclear genes. J. Mol. Evol. 50, 56-68. |