Plant Diversity ›› 2024, Vol. 46 ›› Issue (02): 219-228.DOI: 10.1016/j.pld.2023.07.009
• Articles • Previous Articles Next Articles
Nian Zhoua,b, Ke Miaoa,b, Changkun Liuc, Linbo Jiaa, Jinjin Hua, Yongjiang Huanga, Yunheng Jia,d
Received:
2023-02-27
Revised:
2023-07-22
Online:
2024-03-25
Published:
2024-04-07
Contact:
Nian Zhou,E-mail:zhounian@mail.kib.ac.cn;Ke Miao,E-mail:miaoke@mail.kib.ac.cn;Changkun Liu,E-mail:liuchangkun@stu.scu.edu.cn;Linbo Jia,E-mail:jialinbo@mail.kib.ac.cn;Jinjin Hu,E-mail:hujinjin@mail.kib.ac.cn;Yongjiang Huang,E-mail:huangyongjiang@mail.kib.ac.cn;Yunheng Ji,E-mail:jiyh@mail.kib.ac.cn
Supported by:
Nian Zhou, Ke Miao, Changkun Liu, Linbo Jia, Jinjin Hu, Yongjiang Huang, Yunheng Ji. Historical biogeography and evolutionary diversification of Lilium (Liliaceae): New insights from plastome phylogenomics[J]. Plant Diversity, 2024, 46(02): 219-228.
Add to citation manager EndNote|Ris|BibTeX
[1] Adams, J.S., 2009. Species richness:patterns in the diversity of life. Springer Berlin, Heidelberg. [2] Allen, A.P., Gillooly, J.F., Savage, V.M., et al., 2006. Kinetic effects of temperature on rates of genetic divergence and speciation. Proc. Natl. Acad. Sci. U.S.A. 103, 9130-9135. [3] An, Z.S., Kutzbach, J.E., Prell, W.L., et al., 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature 411, 62-66. [4] Baranova, M., 1988. A synopsis of the system of the genus Lilium (Liliaceae). Bot. Zh. 73, 1319-1329. [5] Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic:a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120. [6] Carlsen, M.M., Fer, T., Schmickl, R., et al., 2018. Resolving the rapid plant radiation of early diverging lineages in the tropical Zingiberales:pushing the limits of genomic data. Mol. Phylogenet. Evol. 128, 55-68. [7] Chan, P.P., Lin, B.Y., Mak, A.J., et al., 2021. tRNAscan-SE 2.0:improved detection and functional classification of transfer RNA genes. Nucleic. Acids Res. 49, 9077-9096. [8] Chernomor, O., von Haeseler, A., Minh, B.Q., 2016. Terrace aware data structure for phylogenomic inference from supermatrices. Syst. Biol. 65, 997-1008. [9] Comber, H.F., 1949. A new classification of the genus Lilium, in:Chittenden, F.J. (Ed.), Lily year book of RHS. Royal Horticultural Society, London. pp. 85-105. [10] Darling, A.C.E, Mau, B., Blattner, F.R., et al., 2004. Mauve:multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 14, 1394-1403. [11] Do, H.D.K, Kim, C., Chase, M.W., et al., 2020. Implications of plastome evolution in the true lilies (monocot order Liliales). Mol. Phylogenet. Evol. 148, 106818. [12] Donoghue, M.J., Bell, C.D., Li, J., 2001. Phylogenetic patterns in northern hemisphere plant geography. Int. J. Plant Sci. 162, S41-S52. [13] Doyle, J.J., Doyle, J.L., 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11-15. [14] Drummond, A.J., Rambaut, A., Marc, A.S., et al., 2018. BEAUti v1.10.4. https://github.com/beast-dev/beast-mcmc. [15] Du, Y., Bi, Y., Yang, F., et al., 2017. Complete chloroplast genome sequences of Lilium:insights into evolutionary dynamics and phylogenetic analyses. Sci. Rep. 7, 5751. [16] Du, Y.P., He H.B., Wang, Z., et al., 2014. Molecular phylogeny and genetic variation in the genus Lilium native to China based on the internal transcribed spacer sequences of nuclear ribosomal DNA. J. Plant Res. 127, 249-263. [17] Duan, Q., Liu, F., Gui, D., et al., 2022. Phylogenetic analysis of wild species and the maternal origin of cultivars in the genus Lilium using 114 plastid genomes. Front. Plant Sci. 13, 865606, https://doi.org/10.3389/fpls.2022.865606. [18] Endlicher, S.L., 1836. Genera Plantarum. Vienna. [19] Favre, A., Paeckert, M., Pauls, S.U., et al., 2015. The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas. Biol. Rev. 90, 236-253. [20] Flower, B.P., Kennett, J.P., 1994. The middle Miocene climatic transition:East Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeogr. Palaeocl. 108, 537-555. [21] Folk, R.A., Mandel, J.R., Freudenstein, J.V., 2016. Ancestral gene flow and parallel organellar genome capture result in extreme phylogenomic discord in a lineage of angiosperms. Syst. Biol. 66, 320-337. [22] Gao, Y.D., Gao, X.F., 2016. Accommodating Nomocharis in Lilium (Liliaceae). Phytotaxa 277, 205-210. [23] Gao, Y.D., Harris, A., Zhou, S.D., et al., 2013. Evolutionary events in Lilium (including Nomocharis, Liliaceae) are temporally correlated with orogenies of the Q-T plateau and the Hengduan Mountains. Mol. Phylogenet. Evol. 68, 443-460. [24] Gao, Y.D., Hohenegger, M., Harris, A., et al., 2012. A new species in the genus Nomocharis Franchet (Liliaceae):evidence that brings the genus Nomocharis into Lilium. Plant Syst. Evol. 298, 69-85. [25] Givnish, T.J., 1997. Adaptive Radiation and Molecular Systematics:Aims and Conceptual Issues. In:Givnish, T.J., Systma, K.J. (Eds.). Molecular Evolution and Adaptive Radiation. Cambridge University Press, Cambridge, pp. 1-54. [26] Givnish, T.J., Skin-Ner, M.W., Resetnik, I., et al., 2020. Evolution, geographical spread and floral diversification of the genus Lilium with special reference to the lilies of North America. Evolution 74, 26-44. [27] Gladenkov, A.Y., Oleinik, A.E., Marincovich, L., et al., 2002. A refined age for the earliest opening of Bering Strait. Palaeogeogr. Palaeocl. 183, 321-328. [28] Goldberg, E.E., Lancaster, L.T., Ree, R.H., 2011. Phylogenetic inference of reciprocal effects between geographic range evolution and diversification. Syst. Biol. 60, 451-465. [29] Gong, X., Hung, K.H., Ting, Y.W., et al., 2017. Frequent gene flow blurred taxonomic boundaries of sections in Lilium L. (Liliaceae). PLoS ONE 12, e0183209. [30] Graham, A., 2011. A natural history of the new world:the ecology and evolution of plants in the Americas. Q. Rev. Biol. 86, 357-358. [31] Harrison, T., Copeland, P., Kidd, W., et al., 1992. Raising Tibet. Science 255, 1663-1670. [32] Herbert, T.D., Lawrence, K.T., Tzanova, A., et al., 2016. Late Miocene global cooling and the rise of modern ecosystems. Nat. Geosci. 9, 843-847. [33] Holbourn, A.E., Kuhnt, W., Clemens, S.C., et al., 2018. Late Miocene climate cooling and intensification of southeast Asian winter monsoon. Nat. Commun. 9, 1584. [34] Hong, D.Y., Blackmore, S., 2015. Plants of China:A Companion to the Flora of China. Cambridge University Press, Cambridge. [35] Hooker, J.J., Collinson, M.E., Sille, N.P., 2004. Eocene-Oligocene mammalian faunal turnover in the Hampshire Basin, UK:calibration to the global time scale and the major cooling event. J. Geol. Soc. 161, 161-172. [36] Huang, J., Yang, L.Q., Yu, Y., et al., 2018. Molecular phylogenetics and historical biogeography of the tribe Lilieae (Liliaceae):bi-directional dispersal between biodiversity hotspots in Eurasia. Ann. Bot. 122, 1245-1262. [37] Huang, Y.L., Li, X.J., Yang, Z.Y., et al., 2016. Analysis of complete chloroplast genome sequences improves phylogenetic resolution in Paris (Melanthiaceae). Front. Plant Sci. 7, 1797. [38] Huelsenbeck, J.P., Ronquist, F., 2001. MRBAYES:Bayesian inference of phylogenetic trees. Bioinformatics 17, 754-755. [39] Jacques, F.M.B., Guo, S.X., Su, T., et al., 2011. Quantitative reconstruction of the Late Miocene monsoon climates of southwest China:a case study of the Lincang flora from Yunnan Province. Palaeogeogr. Palaeocl. 304, 318-327. [40] Jacques, F.M.B., Shi, G., et al., 2015. A tropical forest of the middle Miocene of Fujian (SE China) reveals Sino-Indian biogeographic affinities. Rev. Palaeobot. Palynol. 216, 76-91. [41] Jansen, R.K., Cai, Z., Raubeson, L.A., et al., 2007. Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc. Natl. Acad. Sci. U.S.A. 104, 19369-19374. [42] Ji, Y.H., Landis, B.J., Yang, J., et al., 2023. Phylogeny and evolution of Asparagaceae subfamily Nolinoideae:new insights from plastid phylogenomics. Ann. Bot. 131, 301-312. [43] Ji, Y.H., Yang, L.F., Chase, M.W., et al., 2019. Plastome phylogenomics, biogeography, and clade diversification of Paris (Melanthiaceae). BMC Plant Biol. 9, 543. [44] Ji, Y.H., Landis, J. B., Yang, J., et al., 2023. Phylogeny and evolution of Asparagaceae subfamily Nolinoideae:New insights from plastid phylogenomics. Ann. Bot. 131, 301-312. [45] Jin, J.J., Yu, W.B., Yang, J.B., et al., 2020. GetOrganelle:a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21, 241. [46] Katoh, K., Standley, DM., 2013. MAFFT multiple sequence alignment software version 7:improvements in performance and usability. Mol. Biol. Evol. 30, 772-780. [47] Kearse, M., Moir, R., Wilson, A., et al., 2012. Geneious Basic:an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647-1649. [48] Kim, H.T., Lim, K.B., Kim, J.S., 2019. New insights on Lilium phylogeny based on a comparative phylogenomic study using complete plastome sequences. Plants 8, 547. [49] Kim, J.H., Lee, S.I., Kim, B.R., et al., 2017. Chloroplast genomes of Lilium lancifolium, L. amabile, L. callosum, and L. philadelphicum:molecular characterization and their use in phylogenetic analysis in the genus Lilium and other allied genera in the order Liliales. PLoS One 12, e0186788. [50] Kim, J.S., Kim, J.H., 2018. Updated molecular phylogenetic analysis, dating and biogeographical history of the lily family (Liliaceae:Liliales). Bot. J. Linn. Soc. 187, 579-593. [51] Latham, R.E., Ricklefs, R.E., 1993. Continental Comparisons of Temperate-Zone Tree Species Diversity. In:Ricklefs, R.E., Schluter, D. (Eds.). Species Diversity in Ecological Communities:Historical and Geographical Perspectives. University of Chicago Press, Chicago, pp. 294-318. [52] Lewis, A.R., Marchant, D.R., Ashworth, A.C., et al., 2007. Major middle Miocene global climate change:evidence from East Antarctica and the Transantarctic Mountains. Geol. Soc. Am. Bull. 119, 1449-1461. [53] Li, H.T., Yi, T.S., Gao, L.M., et al., 2019. Origin of angiosperms and the puzzle of the Jurassic gap. Nat. Plants 5, 461-470. [54] Li, J., Cai, J., Qin, H.H., et al., 2022. Phylogeny, age, and evolution of tribe Lilieae (Liliaceae) based on whole plastid genomes. Front. Plant Sci. 12, 699226. [55] Li, J.J., 2006. The Qinghai-Tibet Plateau uplifting and environmental evolution in Asia:article collection of academician Li Ji-Jun. Science Press, Beijing. [56] Li, S.F., Valdes, P.J., Farnsworth, A., et al., 2021. Orographic evolution of northern Tibet shaped vegetation and plant diversity in Eastern Asia. Sci. Adv. 7, eabc7741. [57] Liang, S.Y., Tamura, M.N., 2000. Lilium L. In:Wu, Z.Y., Raven, P.H. (Eds). Flora of China. Science Press and Missouri Botanical Garden Press, Beijing and St. Louis., pp. 135-149. [58] Linder, H.P., 2008. Plant species radiations:where, when, why? Philos. Trans. R. Soc. B-Biol. Sci. 363, 3097-3105. [59] Liu, C.Q., Sun, H., 2019. Pollination in Lilium sargentiae (Liliaceae) and the first confirmation of long-tongued hawkmoths as a pollinator niche in Asia:Hawkmoth pollination in Lilium sargentiae. J. Syst. Evol. 57, 81-88. [60] Liu, X.D., Dong, B.W., 2013. Influence of the Tibetan Plateau uplift on the Asian monsoon-arid environment evolution. Chin. Sci. Bull. 58, 4277-4291. [61] Lu, H., Guo, Z., 2013. Evolution of the monsoon and dry climate in East Asia during late Cenozoic:A review. Sci. China Earth Sci. 57, 70-79. [62] McKain, M.R., Johnson, M.G., Uribe-Concers, S., et al., 2018. Practical considerations for plant phylogenomics. Appl. Plant Sci. 6, e1038. [63] Moore, M.J., Bell, C.D., Soltis, P.S., et al., 2007. Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proc. Natl. Acad. Sci. U.S.A. 104, 19363-19368. [64] Moore, M.J., Soltis, P.S., Bell, C.D., et al., 2010. Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proc. Natl. Acad. Sci. U.S.A. 107, 4623-4628. [65] Morales-Briones, D.F., Liston, A., Tank, D.C., 2018. Phylogenomic analyses reveal a deep history of hybridization and polyploidy in the Neotropical genus Lachemilla (Rosaceae). New Phytol. 218, 1668-1684. [66] Muellner-Riehl, A.N., Schnitzle,r J., Kissling, W.D., et al., 2019. Origins of global mountain plant biodiversity:testing the mountain-geobiodiversity hypothesis. J. Biogeogr. 46, 2826-2838. [67] Nguyen, L.T., Schmidt, H.A., von Haeseler, A., et al., 2015. IQ-TREE:a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268-274. [68] Nishikawa, T., Okazaki, K., Uchino, T., et al., 1999. A molecular phylogeny of Lilium in the internal transcribed spacer region of nuclear ribosomal DNA. J. Mol. Evol. 49, 238-249. [69] Nurk, N.M., Uribe-Convers, S., Gehrke, B., et al., 2015. Oligocene niche shift, Miocene diversification-cold tolerance and accelerated speciation rates in the St. John's Worts (Hypericum, Hypericaceae). BMC Evol. Biol. 15, 80. [70] Ohlemuller, R., 2011. Running out of climate space. Science 334, 613-614. [71] Paradis, E., Schliep, K., 2019. Ape 5.0:an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526-528. [72] Parks, M., Cronn, R., Liston, A., 2009. Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes. BMC Biology 7, 84. [73] Pearson, P.N., Palmer, M.R., 2000. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406, 695-699. [74] Philippe, H., Brinkmann, H., Lavrov, D.V., et al., 2011. Resolving difficult phylogenetic questions:why more sequences are not enough. PLoS Biology 9, e1000602. [75] Philippe, H., Delsuc, F., Brinkmann, H., et al., 2005. Phylogenomics. Annu. Rev. Ecol. Evol. Syst. 36, 541-562. [76] Posada, D., Buckley, T.R., 2004. Model selection and model averaging in phylogenetics:advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst. Biol. 53, 793-808. [77] Posada, D., Crandall, K.A., 1998. MODELTEST:testing the model of DNA substitution. Bioinformatics 14, 817-818. [78] Qian, H., 2001. A comparison of generic endemism of vascular plants between East Asia and North America. Int. J. Plant Sci. 162, 191-199. [79] Qian, H., 2002. A comparison of the taxonomic richness of temperate plants in East Asia and North America. Am. J. Bot. 89, 1818-1825. [80] Rabosky, D.L., Grundler, M., Anderson, C., et al., 2014. BAMMtools:an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 5, 701-707. [81] Rambaut, A., 2016. FigTree v1.4.3. http://tree.bio.ed.ac.uk/software/figtree/. [82] Rambaut, A., Drummond, A.J., 2018. TreeAnnotator v1.10.4. https://github.com/beast-dev/beast-mcmc. [83] Rambaut, A., Drummond, A.J., Xie, D., et al., 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901-904. [84] Rieseberg, L.H., Wendel, J.F., 1993. Introgression and Its Consequences in Plants. In:Harrison, R.G. (Ed.). Hybrid Zones and the Evolutionary Process. Oxford University Press, New York, pp. 70-114. [85] Rokas, A., Carroll, S.B., 2005. More genes or more taxa? The relative contribution of gene number and taxon number to phylogenetic accuracy. Mol. Biol. Evol. 22, 1337-1344. [86] Rong, L., Lei, J., Wang, C., 2011. Collection and evaluation of the genus Lilium resources in Northeast China. Genet. Resour. Crop Evol. 58, 115-123. [87] Rosenberg, M.S., Kumar, S., 2001. Incomplete taxon sampling is not a problem for phylogenetic inference. Proc. Natl. Acad. Sci. U.S.A. 98, 10751-10756. [88] Schluter, D., 2009. Evidence for ecological speciation and its alternative. Science 323, 737-741. [89] Schluter, D., 2016. Speciation, ecological opportunity, and latitude. Am. Nat. 187, 1-18. [90] Schluter, D., Pennell, M.W., 2017. Speciation gradients and the distribution of biodiversity. Nature 546, 48-55. [91] Soltis, D.E., Johnson, L.A., Looney, C., 1996. Discordance between ITS and chloroplast topologies in the Boykinia group (Saxifragaceae). Syst. Bot. 21, 169-185. [92] Soltis, D.E., Kuzoff, R.K., 1995. Discordance between nuclear and chloroplast phylogenies in the Heuchera group (Saxifragaceae). Evolution 49, 727-742. [93] Spicer, R.A., 2017. Tibet, the Himalaya, Asian monsoons and biodiversity-In what ways are they related? Plant Divers. 39, 233-244. [94] Spicer, R.A., Farnsworth, A., Su, T., 2020. Cenozoic topography, monsoons and biodiversity conservation within the Tibetan Region:An evolving story. Plant Divers. 42, 229-254. [95] Spicer, R.A., Su, T., Valdes, P.J., et al., 2021. The topographic evolution of the Tibetan Region as revealed by palaeontology. Palaeobiodivers. Palaeoenviron. 101, 213-243. [96] Su, N., Hodel, G.J.R., Wang, X. et al., 2023. Molecular phylogeny and inflorescence evolution of Prunus (Rosaceae) based on RAD-seq and genome skimming analyses. Plant Divers. 45, 397-408. [97] Stull, G.W., Soltis, P.S., Soltis, D.E., et al., 2020. Nuclear phylogenomic analyses of asterids conflict with plastome trees and support novel relationships among major lineages. Am. J. Bot. 107, 790-805. [98] Suchard, M.A., Lemey, P., Baele, G., et al., 2018. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, vey016. [99] Sun, M., Folk, R.A., Gitzendanner, M.A., et al., 2020. Recent accelerated diversification in rosids occurred outside the tropics. Nat. Commun. 11, 3333. [100] Sun, X.J., Wang, P.X., 2005. How old is the Asian monsoon system? Palaeobotanical records from China. Palaeogeogr. Palaeocl. 222, 181-222. [101] Svenning, J.C., Eiserhardt, W.L., Normand, S., et al., 2015. Ordonez A, Sandel B. The influence of paleoclimate on present-day patterns in biodiversity and ecosystems. Annu. Rev. Ecol. Evol. Syst. 46, 551-572. [102] Tiffney, B.H., 1985.The Eocene North Atlantic land bridge:its importance in Tertiary and modern phytogeography of the northern Hemisphere. J. Arnold. Arbor. 66, 243-273. [103] Tillich, M., Lehwark, P., Pellizzer, T., et al., 2017. GeSeq-versatile and accurate annotation of organelle genomes. Nucleic. Acids Res. 45, W6-W11. [104] Wan, S.M., Li, A.C., Clift, P.D., et al., 2007. Development of the East Asian monsoon:mineralogical and sedimentologic records in the northern South China Sea since 20 Ma. Palaeogeogr. Palaeocl. 254, 561-582. [105] Wang, B., Shi, G.L, Xu, C., et al., 2021. The mid-Miocene Zhangpu biota reveals an outstandingly rich rainforest biome in East Asia. Sci. Adv. 7, eabg0625. [106] Wang, P.X., Wang, B., Cheng, H., et al., 2017. The global monsoon across time scales:Mechanisms and outstanding issues. Earth Sci. Rev. 74, 84-121. [107] Wen, J., Xie, D.F., Price, M., et al. 2021. Backbone phylogeny and evolution of Apioideae (Apiaceae):new insights from phylogenomic analyses of plastome data. Mol. Phylogenet. Evol. 161, 107183. [108] Wen, J., Zhang, J.Q., Nie, Z.L., et al., 2014. Evolutionary diversifications of plants on the Qinghai-Tibetan Plateau. Front. Genet. 5, 4. [109] Wendel, J.F., Doyle, J.J., 1998. Phylogenetic Incongruence:Window into Genome History and Molecular Evolution. In:Soltis, D.E., Soltis, P.S., Doyle, J.J. (Eds.). Molecular Systematics of Plants II. Springer, Boston, pp. 265-296. [110] Whitfield, J.B., Lockhart, P.J., 2007. Deciphering ancient rapid radiations. Trends Ecol. Evol. 22, 258-265. [111] Wick, R.R., Schultz, M.B., Zobel, J., et al., 2015. Bandage:interactive visualization of de novo genome assemblies. Bioinformatics 31, 3350-3352. [112] Wilson, E.H., 1925. The Lilies of Eastern Asia:A Monograph. Dulau and Company Ltd., London. [113] Wu, X.W., Li, S.F., Xiong, L., et al., 2006. Distribution situation and suggestion on protecting wild lilies in Yunnan Province. J. Plant Genet. Resour. 7, 3327-3330. [114] Xing, Y.W., Ree, R.H., 2017. Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proc. Natl. Acad. Sci. U.S.A. 114, E3444-E3451. [115] Xu, X.M, Liu, D.H., Zhu, S.X., et al., 2023. Phylogeny of Trigonotis in China-with a special reference to its nutlet morphology and plastid genome. Plant Divers. 45, 409-421. [116] Yang, L.F., Yang, Z.Y., Liu, C.K., et al., 2019. Chloroplast phylogenomic analysis provides insights into the evolution of the largest eukaryotic genome holder, Paris japonica (Melanthiaceae). BMC Plant Biol. 19, 293. [117] Yao, Y.F., Bruch, A.A., Mosbrugger, V., et al., 2011. Quantitative reconstruction of Miocene climate patterns and evolution in Southern China based on plant fossils. Palaeogeogr. Palaeocl. 304, 291-307. [118] You, Y., Huber, M., Muller, R.D., et al., 2009. Simulation of the middle Miocene climate optimum. Geophys. Res, Lett. 36, L04702. [119] Yu, Y., Blair, C., He, X., 2020. RASP 4:Ancestral state reconstruction tool for multiple genes and characters. Mol. Biol. Evol. 37, 604-606. [120] Zachos, J., Pagani, M., Sloan, L., et al., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686-693. [121] Zachos, J.C., Dickens, G.R., Zeebe, R.E., 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279-283. [122] Zhang, Q.Q., Ferguson, D.K., Mosbrugger, V., et al., 2012. Vegetation and climatic changes of SW China in response to the uplift of Tibetan Plateau. Palaeogeogr. Palaeocl. 363, 23-36. [123] Zheng, D., Yao, T.D., 2005. Uplifting of Tibetan Plateau with its environmental effects. Adv. Earth Sci. 21, 451-458. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||