[1] Arroyo, M.T.K., Munoz, M.S., Henriquez, C., et al., 2006. Erratic pollination, high selfing levels and their correlates and consequences in an altitudinally widespread above-tree-line species in the high Andes of Chile. Acta Oecol. 30, 248-257. [2] Barrett, S.C.H., 2002. The evolution of plant sexual diversity. Nat. Rev. Genet. 3, 274-284. [3] Barrett, S.C.H., 2010. Understanding plant reproductive diversity. Phil. Trans. R. Soc. B. 365, 99-109. [4] Bawa, K.S., 1980. Evolution of dioecy in flowering plants. Annu. Rev. Ecol. Evol. Syst. 11, 15-39. [5] Blionis, G.J, Vokou, D., 2001. Pollination ecology of Campanula species on Mt Olympos, Greece. Ecography 24, 287-297. [6] Bullock, S.T., 1985. Breeding systems in the flora of a tropical deciduous forest in Mexico. Biotropica 17, 207-301. [7] Chen, J., Fleming, T.H., Zhang, L., et al., 2004. Patterns of fruits traits in a tropical rain forest in Xishuangbanna, SW China. Acta Oecol. 26, 157-164. [8] Chen, S.C., Cornwell, W.K., Zhang, H.X., et al., 2017. Plants show more flesh in the tropics:variation in fruit type along latitudinal and climatic gradients. Ecography 40, 531-538. [9] Chen, X.S., Li, Q.J., 2008a. Patterns of plant sexual systems in subtropical evergreen broad-leaved forests in Ailao Mountains, SW China. J Plant Ecol. 1, 179-185. [10] Chen, X.S., Li, Q.J., 2008b. Sexual systems and ecological correlates in an Azonal tropical forests, SW China. Biotropica 40, 160-167. [11] Coombe, B.G., 1976. The development of fleshy fruits. Annu. Rev. Psychol. 27, 207-228. [12] Etterson, J.R., Mazer, S.J., 2016. How climate change affects plants' sex lives. Science 353, 32-33. [13] Fox, J.F., 1985. Incidence of dioecy in relation to growth form, pollination and dispersal. Oecologia 67, 244-249. [14] Galen, C., 2005. It never rains but then it pours:the diverse effects of water on flower integrity and function. In:Reekie, E., Bazzaz, F.A., (Eds.), Reproductive Allocation in Plants. Elsevier Academic Press, San Diego, pp.77-95. [15] Gao, Y.Q., Zheng, J.X., Lin, X.Q., et al., 2020. Distribution patterns of clonal plants in the subnival belt of the Hengduan Mountains, SW China. Plant Divers. 42, 386-392. [16] Givnish, T.J., 1980. Ecological constraints on the evolution of breeding systems inn seed plants:dioecy and dispersal in gymnosperms. Evolution 34, 959-972. [17] Godin, V., 2017. Sexual forms and their ecological correlates of flowering plants in Siberia. Russ. J. Ecol. 48, 433-439. [18] Grayson, D.K., 1998. Moisture history and small mammal community richness during the latest pleistocene and holocene, Northern Bonneville Basin, Utah. Quaternary Res. 49,330-334. [19] Gross, C.L., 2005. A comparison of the sexual systems in the trees from the Australian tropics with other tropical biomes-more monoecy but why? Am. J. Bot. 92, 907-919. [20] He, Y.B., Lu, P.Z., Zhu, T., 2000. Causes for formation of dry-hot valleys in Hengduan Mountain-Yunnan plateau. Resour. Sci. 22, 69-72. [21] Hultine, K.R., Grady, K.C., Wood, T.E., et al., 2016. Climate change perils for dioecious plant species. Nat. Plants. 2, 16109. [22] Jin, Z.Z., 1986. The characteristics and utilization of shrub-grasslands in tropical and subtropical mountains of Yunnan. Chin. J. Plant Ecol. 10, 81-89. [23] Jin, Z.Z., 2002. Floristic characteristics of dry hot valley and dry warm valley in Yunnan and Sichuan. Yunnan Science and Technology Press, Kunming. [24] Johnson, S.D., Steiner, K.E., 2000. Generalization versus specialization in plant pollination systems. Trend. Ecol. Evol. 15, 140-143. [25] Kevan, P.G., Godglick, B., 2017. High incidence and correlates of dioecy in the flora of the Canadian Arctic Archipelago. Arct. Sci. 3, 745-755. [26] Kress, W.J., Beach, J.H., 1994. Flowering plant reproductive systems. In:McDade L. A., Bawa K. S., Hespenheide H. A., Hartshorn G. S., (eds.), La Selva:Ecology and Natural History of A Nneotropical Rain Forest. University of Chicago Press, Chicago. [27] Li, K., Liu, F.Y., Yang, Z.Y., et al., 2011. Study status and trends of vegetation restoration of dry-hot valley in southwest China. World Forest. Res. 4, 55-60. [28] Liang, C.X., Liu, J., Pan, B., et al., 2020. Precipitation is the dominant driver for bird species richness, phylogenetic and functional structure in university campuses in northern China. Avian Res. 11, 26. [29] Liu, F.Y., Wang, X.Q., Chen, M., et al., 2015. Flowering phenology and breeding system of Terminalia franchetii (Combretaceae) in the dry-hot valley of the Jinsha River, China. Acta Ecol. Sin. 35, 7043-7051. [30] Lithgow, G.J., Kirkwood, T.B.L., 1996. Mechanics and evolution of aging. Science 273, 80. [31] Liu, K.W., Liu, Z.J., Huang, L.Q., et al., 2006. Self-fertilization strategy in an Orchid. Nature 441, 945-946. [32] Lloyd, D.G., Barrett, S., 1996. Floral biology:studies on floral evolution in animal-pollinated plants. Springer US, Boston, MA. [33] Machado, I.C., Lopes, A.V., Sazima, M., 2006. Plant sexual systems and a review of the breeding system studies in the Caatinga, a Brazilian tropical dry forest. Ann. Bot. 97, 277-287. [34] Matallana, G., Wendt, T., Araujo, D.S.D., et al., 2005. High abundance of dioecious plants in a tropical coastal vegetation. Am. J. Bot. 92, 1513-1519. [35] McComb, J., 1966. The sex forms of species in the flora of the south-west of Western Australia. Aust. J. Bot. 14, 303-316. [36] Moeller, D.A., Briscoe Runquist, R.D., Moe, A.M., et al., 2017. Global biogeography of mating system variation in seed plants. Ecol. Lett. 20, 375-384. [37] Ohya, I., Nanami, S., Itoh, A., 2017. Dioecious plants are more precocious than cosexual plants:A comparative study of relative sizes at the onset of sexual reproduction in woody species. Ecol. Evol. 7, 5660-5668. [38] Peng, D.L., Ou, X.K., Xu, B., et al., 2014. Plant sexual systems correlated with morphological traits:Reflecting reproductive strategies of alpine plants. J. Syst. Evol. 52, 368-377. [39] Peng, D.L., Zhang, Z.Q., Xu, B., et al., 2012. Patterns of flower morphology and sexual systems in the subnival belt of the Hengduan Mountains, SW China. Alpine Bot. 122, 65-73. [40] Primack, R.B., 1985. Longevity of individual flowers. Annu. Rev. Ecol. Syst. 16, 15-37. [41] Ramirez, N., 2005. Plant sexual systems, dichogamy, and herkogamy in the Venezuelan Central Plain. Flora 200, 30-48. [42] Ramirez, N., Briceno, H., 2022. Plant reproductive systems in a secondary deciduous forest remnant in the Caracas valley, Venezuela. Plant Ecol. 223, 537-557. [43] Ramirez, N., Brito, Y., 1990. Reproductive biology of a tropical palm swamp community in the Venezuelan Llanos. Am. J. Bot. 77, 1260-1271. [44] Renner, S.S., Ricklefs, R.E., 1995. Dioecy and its correlates in the flowering plants. Am. J. Bot. 82, 596-606. [45] Richards, A.J., 1997. Plant breeding systems. Chapman and Hall, London. [46] Ruiz-Zapata, T., Arroyo M.T.K., 1978. Plant reproductive ecology of a secondary deciduous tropical forest in Venezuela. Biotropica 10, 221-230. [47] Sakai, A.K., Wagner, W.L., Ferguson, D.M., et al., 1995. Biogeographical and ecological correlates of dioecy in the Hawaiian flora. Ecology 76, 2530-2543. [48] Schoen, D.J., Johnson, M.T.J., Wright, S.I., 2019. The ecology, evolution, and genetics of plant reproductive systems. New Phytol. 224, 999-1004. [49] Song, B., Sun, L., Barrett, S.C., et al., 2022. Global analysis of floral longevity reveals latitudinal gradients and biotic and abiotic correlates. New Phytol. 235, 2054-2065. [50] Song, B., Zhang, Z.Q., Stocklin, J., et al., 2013. Multifunctional bracts enhance plant fitness during flowering and seed development in Rheum nobile (Polygonaceae), a giant herb endemic to the high Himalayas. Oecologia 172, 359-370. [51] Strauss, S.Y., Whittall, J.B., 2006. Non-pollinator agents of selection on floral traits. In:Harder, L.D., Barrett, S.C.H., (Eds.), Ecology and Evolution of Flowers. Oxford University Press, Oxford, pp. 120-138. [52] Tang, R., Huang, B.G., Sun, W.B., et al., 2020. Pollination biology of Amorphophallus albus (Araceae), an endemic plant in the dry-hot valley of Jinsha River. Plant Sci. J. 38, 458-466. [53] Teixido, A.L., Barrio, M., Valladares, F., et al., 2016. Size matters:understanding the conflict faced by large flowers in Mediterranean environments. Bot. Rev. 82, 204-228. [54] Tognetti, R., 2012. Adaptation to climate change of dioecious plants:does gender balance matter? Tree Physiol. 32, 1321-1324. [55] Totland, 2001. Environment-dependent pollen limitation and selection on floral traits in an alpine species. Ecology 82, 2233-2244. [56] Vamosi, J.C., Otto, S.P., Barrett, S.C.H., 2003. Phylogenetic analysis of the ecological correlates of dioecy in angiosperms. J. Evol. Biol. 16, 1006-1018. [57] Vamosi, S.M., Queenborough, S.A., 2010. Breeding systems and phylogenetic diversity of seed plants along a large-scale elevational gradient. J. Biogeogr. 37, 465-476. [58] Van der Niet, T., Johnson, S.D., 2012. Phylogenetic evidence for pollinator-driven diversification of angiosperms. Trends Ecol. Evol. 27, 353-361. [59] Vary, L.B., Gillen, D.L., Randrianjanahary, M., et al., 2011. Dioecy, Monoecy, and their ecological correlates in the littoral forest of Madagascar. Biotropica 43, 582-590. [60] Wang, Q.X., Shao, S.C., Su, Y., et al., 2019. A novel case of autogamy and cleistogamy in Dendrobium Wangliangii:A rare orchid distributed in the Dry-Hot Valley. Ecol. Evol. 9, 12906-12914. [61] Wang, X., Wang, G.R., Xia, F.C., et al., 2017. Sexual system and ecological links of woody plants in Changbai Mountains, northeastern China. J. Beijing Forestry Univ. 39, 58-64. [62] Wang, Y.Y., Luo, A., Lyu, T., et al., 2021. Global distribution and evolutionary transitions of angiosperm sexual systems. Ecol. Lett. 24, 1835-1847. [63] Wang, Y.Y., Lyu, T., Luo, A., et al., 2020. Spatial patterns and drivers of angiosperm sexual systems in China differ between woody and herbaceous species. Front Plant Sci. 11. [64] Waser, N.M., Chittka, L., Price, M.V., et al., 1996. Generalization in pollination systems, and why it matters. Ecology 77, 1043-1060. [65] Wu, Z.Y., 1991. The areal-types of Chinese genera of seed plants. Acta Bot.Yunnan. 13, 1-3. [66] Wu, Z.Y., Raven, P.H., Hong, D.Y., 1994-2011. Flora of China. Science Press/Missouri Botanical Garden Press, Beijing/St. Louis. [67] Wu, Z.Y., Zhou, Z.K., Sun, H., et al., 2006. The areal-types of seed plants and their origin and differentiation. Yunnan Science & Technology Press, Kunming. [68] Xia, F.C., Cheng, F., Liu, Z., et al., 2020. Sexual system and ecological links of flowering plants in Changbai Mountain. Russ. J. Ecol. 51, 345-350. [69] Xu, Y.W., Sun, L., Ma, R., et al., 2023. Does pollinator dependence decrease along elevational gradient? Plant Divers, https://doi.org/10.1016/j.pld.2023.03.006. [70] Yang, X.Y., Wu, X.M., Jiang, M.Y., 2017. Sexual systems and ecological links of wood plants in Kunyu Mountains. J. Beihua Univ. 18, 667-671. [71] Yi, L., Dong, Y.K., Miao, B.G., Peng, Y.Q., 2021. Diversity of butterfly communities in Gaoligong Region of Yunnan. Biodivers. Sci. 29, 950-959. [72] Yunnan Meteorological Bureau. 1983. Climatic data of Yunnan Agriculture. Yunnan People's Press,Kunming. [73] Zhang, H.X., Bonser, S.P., Chen, S.C., et al., 2018. Is the proportion of clonal species higher at higher latitudes in Australia? Austral Ecol. 43, 69-75. [74] Zhang, R.Z., 1992. The arid valley in the Hengduan Mountain Area. Science Press, Beijing. [75] Zhao, Y., Cao, H.L., Xu, W.B., et al., 2018. Contributions of precipitation and temperature to the large scale geographic distribution of fleshy-fruited plant species:growth form matters. Sci. Rep. 8, 17017. [76] Zhu, H., Du, F., 2022. Suggestion to establish a nature reserve for protecting native savanna vegetation in hot dry valley of Jinshajiang, Yunnan. Biodivers. Sci. 30, 186-190. [77] Zhu, H., Tan, Y.H., Yan, L.C., et al., 2020. Flora of the savanna-like vegetation in hot dry valleys, southwestern China with implications to their origin and evolution. Bot. Rev. 86, 281-297. [78] Zhu, X.X., 2014. The flora of seed plants in three rivers valley of SW China (Doctoral dissertation). University of Chinese Academy of Sciences, Beijing. |