[1] Aung, T.S., Hughes, A.C., Khine, P.K., et al., 2023. Patterns of floristic inventory and plant collections in Myanmar. Plant Divers. 45, 302-308, https://doi.org/10.1016/j.pld.2023.01.008. [2] Baker, D.J., Maclean, I.M.D., Goodall, M., et al., 2022. Correlations between spatial sampling biases and environmental niches affect species distribution models. Glob. Ecol. Biogeogr. 31, 1038-1050, https://doi.org/10.1111/geb.13491. [3] Bowler, D.E., Callaghan, C.T., Bhandari, N., et al., 2022. Temporal trends in the spatial bias of species occurrence records. Ecography 2022, e06219, https://doi.org/10.1111/ecog.06219. [4] Breiman, L., 2001. Statistical modeling:The two cultures. Stat. Sci. 16, 199-215, https://doi.org/10.1214/ss/1009213726. [5] Burton, A.C., 2012. Critical evaluation of a long-term, locally-based wildlife monitoring program in West Africa. Biodivers. Conserv. 21, 3079-3094, https://doi.org/10.1007/s10531-012-0355-6. [6] Chen, D.M., Zeng, L.B., 1987. A brief history of botany development in China. J. Cent. South Univ.(Nat. Sci. Ed)21, 117-127, https://doi.org/10.19603/j.cnki.1000-1190.1987.01.022. [7] Chen, G.K., Kery, M., Plattner, M., et al., 2013. Imperfect detection is the rule rather than the exception in plant distribution studies. J. Ecol. 101, 183-191, https://doi.org/10.1111/1365-2745.12021. [8] Daru, B.H., Park, D.S., Primack, R.B., et al., 2018. Widespread sampling biases in herbaria revealed from large-scale digitization. New Phytol. 217, 939-955, https://doi.org/10.1111/nph.14855. [9] de Araujo, M.L., Ramos, F.N., 2021. Targeting the survey efforts:Gaps and biases in epiphyte sampling at a biodiversity hotspot. For. Ecol. Manag. 498, 199544, https://doi.org/10.1016/j.foreco.2021.119544. [10] Diniz, J.A.F., Bastos, R.P., Rangel, T., et al., 2005. Macroecological correlates and spatial patterns of anuran description dates in the Brazilian Cerrado. Glob. Ecol. Biogeogr. 14, 469-477, https://doi.org/10.1111/j.1466-822x.2005.00165.x. [11] Engemann, K., Enquist, B.J., Sandel, B., et al., 2015. Limited sampling hampers"big data "estimation of species richness in a tropical biodiversity hotspot. Ecol. Evol. 5, 807-820, https://doi.org/10.1002/ece3.1405. [12] Feng, G., Yan, H., Yang, X.T., 2019. Climate and food diversity as drivers of mammal diversity in Inner Mongolia. Ecol. Evol. 9, 2142-2148, https://doi.org/10.1002/ece3.4908. [13] Feng, J.M., 2008. Spatial patterns of species diversity of seed plants in China and their climatic explanation. Biodivers. Sci. 16, 470-476, https://doi.org/10.3724/SP.J.1003.2008.08027. [14] Feng, J.M., Wang, X.P., Xu, C.D., et al., 2006. Altitudinal patterns of plant species diversity and community structure on YuLong Mountains, Yunnan, China. J. Mt. Sci. 43, 39-43, https://doi.org/10.3969/j.issn.1008-2786.2006.01.016. [15] Feng, J.M., Xu, C.D., 2009. Large scale distribution pattern of seed plant species richness in China and its relationship with geographical factors. Ecol. Environ. Sci. 18, 249-254, https://doi.org/10.3969/j.issn.1674-5906.2009.01.047. [16] Guo, Q.F., Kelt, D.A., Sun, Z.Y., et al., 2013. Global variation in elevational diversity patterns. Sci. Rep. 3, 3007, https://doi.org/10.1038/srep03007. [17] He, P., Chen, J., Kong, H.Z., et al., 2021. Important supporting role of biological specimen in biodiversity conservation and research. BCAS 36, 425-435, https://doi.org/10.16418/j.issn.1000-3045.20210323001. [18] Hijmans, Robert, J., Cameron, et al., 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965-1978, https://doi.org/10.1002/joc.1276. [19] Hortal, J., Lobo, J.M., Jimenez-Valverde, A., 2007. Limitations of biodiversity databases:case study on seed-plant diversity in Tenerife, Canary Islands. Conserv. Biol. 21, 853-863, https://doi.org/10.1111/j.1523-1739.2007.00686.x. [20] Inman, R., Franklin, J., Esque, T., et al., 2021. Comparing sample bias correction methods for species distribution modeling using virtual species. Ecosphere 12, E03422, https://doi.org/10.1002/ecs2.3422. [21] Ives, A. R., Helmus, M. R. 2011. Generalized linear mixed models for phylogenetic analyses of community structure. Ecol. Monogr. 81, 511-525, https://doi.org/10.1890/10-1264.1. [22] Jiang, C.Y., Yu, W.X., Yang, T., et al., 2018. Geolographical sampling:current status analysis and prediction in China based on Chinese herbaria specimen records. E-Sci. Technolo. Appl. 9, 94-101, https://doi.org/10.11871/j.issn.1674-9480.2018.05.011. [23] Jin, Y., Qian, H., 2022. V.PhyloMaker2:An updated and enlarged R package that can generate very large phylogenies for vascular plants. Plant Divers. 44, 335-339, https://doi.org/10.1111/ecog.04434. [24] Kuper, W., Sommer, J.H., Lovett, J.C., et al., 2006. Deficiency in African plant distribution data-missing pieces of the puzzle. Bot. J. Linn. Soc. 150, 355-368, https://doi.org/10.1111/j.1095-8339.2006.00494.x. [25] Li, X.H., 2013. Using" random forest "for classification and regression. J. Appl. Entomol. 50, 1190-1197, https://doi.org/10.7679/j.issn.2095-1353.2013.163. [26] Liang, C.X., Feng, G., Si, X.F., et al., 2018. Bird species richness is associated with phylogenetic relatedness, plant species richness, and altitudinal range in Inner Mongolia. Ecol. Evol. 8, 53-58, https://doi.org/10.1002/ece3.3606. [27] Lu, L.M., Mao, L.F., Yang, T., et al., 2018. Evolutionary history of the angiosperm flora of China. Nature 554, 234, https://doi.org/10.1038/nature25485. [28] Luo, L.M., Miao, Y.J., Wu, J.S., et al., 2014. Variation in the biodiversity of montane shrub grassland communities along an altitudinal gradient in a Lhasa River basin valley. Acat Pratac. Sin. 23, 320-326, https://doi.org/10.11686/cyxb20140638. [29] Meineke, E.K., Daru, B.H., 2021. Bias assessments to expand research harnessing biological collections. Trends Ecol. Evol. 36, 1071-1082, https://doi.org/10.1016/j.tree.2021.08.003. [30] Meyer, C., Weigelt, P., Kreft, H., 2016. Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecol. Lett. 19, 992-1006, https://doi.org/10.1111/ele.12624. [31] Monsarrat, S., Boshoff, A.F., Kerley, G.I.H., 2019. Accessibility maps as a tool to predict sampling bias in historical biodiversity occurrence records. Ecography 42, 125-136, https://doi.org/10.1111/ecog.03944. [32] Oliveira, U., Paglia, A.P., Brescovit, A.D., et al., 2016. The strong influence of collection bias on biodiversity knowledge shortfalls of Brazilian terrestrial biodiversity. Divers. Distrib. 22, 1232-1244, https://doi.org/10.1111/ddi.12489. [33] Panchen, Z.A., Doubt, J., Kharouba, H.M., et al., 2019. Patterns and biases in an Arctic herbarium specimen collection:Implications for phenological research. Appl. Plant Sci. 7, e1229, https://doi.org/10.1002/aps3.1229. [34] Parnell, J.A.N., Simpson, D.A., Moat, J., et al., 2003. Plant collecting spread and densities:their potential impact on biogeographical studies in Thailand. J. Biogeogr. 30, 193-209, https://doi.org/10.1046/j.1365-2699.2003.00828.x. [35] Qian, L.S., Shi, H.H., Ou, X.K., et al., 2022. Elevational patterns of functional diversity and trait of Delphinium (Ranunculaceae) in Hengduan Mountains, China. Plant Divers. 44, 20-29, https://doi.org/10.1016/j.pld.2021.11.004. [36] Romo, H., Garcia-Barros, E., Lobo, J.M., 2006. Identifying recorder-induced geographic bias in an Iberian butterfly database. Ecography 29, 873-885, https://doi.org/10.1111/j.2006.0906-7590.04680.x. [37] Sanchez-Fernandez, D., Lobo, J.M., Abellan, P., et al., 2008. Bias in freshwater biodiversity sampling:the case of Iberian water beetles. Divers. Distrib. 14, 754-762, https://doi.org/10.1111/j.1472-4642.2008.00474.x. [38] Schmidt-Lebuhn, A.N., Knerr, N.J., Kessler, M., 2013. Non-geographic collecting biases in herbarium specimens of Australian daisies (Asteraceae). Biodivers. Conserv. 22, 905-919, https://doi.org/10.1007/s10531-013-0457-9. [39] Schmitt, C.J., Cook, J.A., Zamudio, K.R., et al., 2019. Museum specimens of terrestrial vertebrates are sensitive indicators of environmental change in the Anthropocene. Philos. T. R. Soc. B-Biol. Sci. 374, 20170387, https://doi.org/10.1098/rstb.2017.0387. [40] Sigler, K., Warren, D., Tracy, B., et al., 2021. Assessing temporal biases across aggregated historical spatial data:a case study of North Carolina's freshwater fishes. Ecosphere 12, e03878, https://doi.org/10.1002/ecs2.3878. [41] Sobral-Souza, T., Stropp, J., Santos, J.P., et al., 2021. Knowledge gaps hamper understanding the relationship between fragmentation and biodiversity loss:the case of Atlantic Forest fruit-feeding butterflies. PeerJ 9, e11673, https://doi.org/10.7717/peerj.11673. [42] Ter Steege, H., Haripersaud, P.P., Banki, O.S., et al., 2011. A model of botanical collectors'behavior in the field:never the same species twice. Am. J. Bot. 98, 31-37, https://doi.org/10.3732/ajb.1000215. [43] Tu, Y., 2020. Based on species distribution model analysis suitable distribution area of Stipa and the correlation with climate factors in China. Beijing Forestry University, https://doi.org/10.26949/d.cnki.gblyu.2020.000921. [44] Vargas, C.A., Bottin, M., Sarkinen, T., et al., 2022. Environmental and geographical biases in plant specimen data from the Colombian Andes. Bot. J. Linn. Soc. 200, 451-464, https://doi.org/10.1093/botlinnean/boac035. [45] Vargas, C.A., Bottin, M., Sarkinen, T., et al., 2024. How to fill the biodiversity data gap:Is it better to invest in fieldwork or curation?Plant Divers. 46, 39-48, https://doi.org/10.1016/j.pld.2023.06.003. [46] Wu, Z.Y., Raven, P.H.,(Eds), 2013. Flora of China. Science Press, Beijing and Missouri Botanical Garden Press, St. Louis. [47] Xiao, C., 2018. Laying foundation for each basis:preface of the special issue" National Specimen Information Infrastructure and Application". E-Sci. Technolo. Appl. 9, 3-6, https://doi.org/10.11871/j.issn.1674-9480.2018.05.001. [48] Xiao, C., Li, M.Y., Ye, F., et al., 2018. Exploration of the development direction of NSII based on tens of millions of specimen records. E-Sci. Technolo. Appl. 9, 7-26, https://doi.org/10.11871/j.issn.1674-9480.2018.05.002. [49] Xu, C.D., Feng, J.M., Wang, X.P., et al., 2008. Vertical distribution patterns of plant species diversity in northern Mt, Gaoligong, Yunnan Province. Chin. J. Ecol. 27, 323-327. http://ir.kib.ac.cn:8080/handle/151853/10317. [50] Yang, W.J., 2013. Geographical sampling bias in the collections of Chinese plants and its impacts on the analysis of biodiversity patterns. University of Chinese Academy of Sciences. [51] Yang, W.J., Liu, D.D., You, Q.H., et al., 2021. Taxonomic bias in occurrence information of angiosperm species in China. Sci. China Life Sci. 64, 584-592, https://doi.org/10.1007/s11427-020-1821-x. [52] Yang, W.J., Ma, K.P., Kreft, H., 2014. Environmental and socio-economic factors shaping the geography of floristic collections in China. Glob. Ecol. Biogeogr. 23, 1284-1292, https://doi.org/10.1111/geb.12225. [53] Yao, T.D., Wang, W.C., An, B.S., et al., 2022. The scientific expedition and research activities on the Tibetan Plateau in 1949-2017. Acta. Geogr. Sin. 77, 1586-1602, https://doi.org/10.11821/dlxb202207002. [54] Ying, J.S., 2001. Species diversity and distribution pattern of seed plants in China. Biodivers. Sci. 9, 393-398, https://doi.org/10.3321/j.issn:1005-0094.2001.04.011. [55] Zhang, Y.B., Du, H.D., Jin, X.H., et al., 2015. Species diversity and geographical distribution of wild orchids in China. Chin. Sci. Bull. 60, 179-188, https://doi.org/10.1360/n972014-00480. [56] Zhao, Y.Z., Zhao, L.Q., Cao, R., 2020. Flora Intramongolica. Typis Intramongolicae Popularis, third ed. Inner Mongolia People's Publishing House, Huhhot. [57] Zizka, A., Antonelli, A., Silvestro, D., 2021. Sampbias, a method for quantifying geographic sampling biases in species distribution data. Ecography 44, 25-32, https://doi.org/10.1111/ecog.05102. [58] Zu, K.L., Chen, F.S., Li, Y.Q., et al., 2024. Climate change impacts flowering phenology in Gongga Mountains, Southwest China. Plant Divers, https://doi.org/10.1016/j.pld.2023.07.007. |