[1] Bedoya, A.M., Ruhfel, B.R., Philbrick, C.T., et al., 2019. Plastid genomes of five species of riverweeds (Podostemaceae):structural organization and comparative analysis in Malpighiales. Front. Plant Sci. 10, 1035. [2] Chen, B.H., Zhang, M., Zhao, K., et al., 2022. Polypleurum chinense(Podostemaceae), a new species from Fujian, China, based on morphological and genomic evidence. PhytoKeys, 199, 167-186. [3] Chen, S., Zhou, Y., Chen, Y., et al., 2018. fastp:an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884-i890. [4] Darling, A.E., Mau, B., Perna, N.T., 2010. progressiveMauve:multiple genome alignment with gene gain, loss and rearrangement. PLoS one 5, e11147. [5] IUCN. 2022. The IUCN Red List of Threatened Species. Version 2022-2. https://www.iucnredlist.org.(Accessed on 31 July 2023). [6] Jin, J.J., Yu, W.B., Yang, J.B., et al., 2020. GetOrganelle:a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21, 1-31. [7] Katayama, N., Koi, S., Sassa, A., et al., 2022. Elevated mutation rates underlie the evolution of the aquatic plant family Podostemaceae. Commun. Biol. 5, 75. [8] Kato, M., 2006. Distribution and biogeography of Podostemaceae in Asia. Bull. Natl. Sci. Mus. 32, 19-27. [9] Kato, M., 2018. Podostemaceae. In:Chayamarit, K., Balslev, H.(Eds), Flora of Thailand, Vol. 14(1). Bangkok:Forest Herbarium, Department of National Parks, Wildlife and Plant Conservation, pp. 68-114. [10] Katoh, K., Misawa, K., Kuma, K.I., et al., 2002. MAFFT:a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059-3066. [11] Kelly, L.J., Ameka, G.K., Chase, M.W., 2010. DNA barcoding of African Podostemaceae (river-weeds):A test of proposed barcode regions. Taxon 59, 251-260. [12] Khanduri, P., Tandon, R., Uniyal, P.L., et al., 2015. Comparative morphology and molecular systematics of Indian Podostemaceae. Plant Syst. Evol. 301, 861-882. [13] Koi, S., Kato, M., 2007. Developmental morphology of the shoot in Weddellina squamulosa and implications for shoot evolution in the Podostemaceae. Ann. Bot. 99, 1121-1130. [14] Koi, S., Uniyal, P.L., Kato, M., 2022. A classification of the aquatic Podostemaceae subfamily Tristichoideae, with a new genus based on ITS and matK phylogeny and morphological characters. Taxon 71, 307-320. [15] Koi, S., Won, H., Tran, H., et al., 2018. Molecular and morphological variation in Terniopsis(Podostemaceae) show contrasting patterns. Nord. J. Bot. 36, e01872. [16] Li, H., Guo, Q., Xu, L., et al., 2023. CPJSdraw:analysis and visualization of junction sites of chloroplast genomes. PeerJ 11, e15326. [17] Lin, Q.W., Lu, G., Li, Z.Y., 2016. Two new species of Podostemaceae from the Yinggeling National Nature Reserve, Hainan, China. Phytotaxa 270, 49-55. [18] Lu, Z., Qin, H., Jin, X., et al., 2021. On the necessity, principle, and process of updating the List of National Key Protected Wild Plants. Biodivers. Sci. 29, 1577. [19] Minh, B.Q., Schmidt, H.A., Chernomor, O., et al., 2020. IQ-TREE 2:new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530-1534. [20] Moline, P., Thiv, M., Ameka, G.K., et al., 2007. Comparative morphology and molecular systematics of African Podostemaceae-Podostemoideae, with emphasis on Dicraeanthus and Ledermanniella from Cameroon. Int. J. Plant Sci. 168, 159-180. [21] Mwanzia, V.M., He, D.X., Gichira, A.W., et al., 2020. The complete plastome sequences of five Aponogeton species (Aponogetonaceae):Insights into the structural organization and mutational hotspots. Plant Divers. 42, 334-342. [22] Park, S., An, B., Park, S., 2018. Reconfiguration of the plastid genome in Lamprocapnos spectabilis:IR boundary shifting, inversion, and intraspecific variation. Sci. Rep. 8, 13568. [23] Philbrick, C.T., Retana, A.N., 1998. Flowering phenology, pollen flow, and seed production in Marathrum rubrum(Podostemaceae). Aquat. Bot. 62, 199-206. [24] Qiu, H., Philbrick, T.C., 2003. Podostemaceae. In:Wu, C.Y., Raven, P.H., Hong, D.Y.(Eds) Flora of China, Vol. 5. Science Press, Beijing and Missouri Botanical Garden Press, St. Louis, pp.190-191. [25] Ronquist, F., Teslenko, M., Van Der Mark, P., et al., 2012. MrBayes 3.2:efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539-542. [26] Rozas, J., Ferrer-Mata, A., Sanchez-DelBarrio, J.C., et al., 2017. DnaSP 6:DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299-3302. [27] Tan, K., Malabrigo Pastor, L., Ren M.X., 2020. Origin and evolution of biodiversity hotspots in southeast Asia. Acta Ecol. Sin. 40, 3866-3877. [28] Tsukamoto, Y., Yonezawa, S., Katayama, N., et al., 2021. Detection of endangered aquatic plants in rapid streams using environmental DNA. Front. Ecol. Evol. 8, 622291. [29] Weng, M.L., Blazier, J.C., Govindu, M., et al., 2014. Reconstruction of the ancestral plastid genome in Geraniaceae reveals a correlation between genome rearrangements, repeats, and nucleotide substitution rates. Mol. Biol. Evol. 31, 645-659. [30] Wu, M., Zhang, K., Yang, X., et al., 2022. Paracladopus chiangmaiensis(Podostemaceae), a new generic record for China and its complete plastid genome. PhytoKeys 195, 1-13. [31] Zhang, M., Zhang, X.H., Ge, C.L., et al., 2022. Terniopsis yongtaiensis(Podostemaceae), a new species from South East China based on morphological and genomic data. PhytoKeys 194,105-122. |