Plant Diversity ›› 2024, Vol. 46 ›› Issue (03): 372-385.DOI: 10.1016/j.pld.2024.03.008
• Articles • Previous Articles
Shanni Caoa, Xue Zhaoa, Zhuojin Lia, Ranran Yua, Yuqi Lib, Xinkai Zhoua, Wenhao Yanb, Dijun Chena, Chao Heb
Received:
2024-03-27
Revised:
2024-03-29
Published:
2024-05-20
Contact:
Xue Zhao,E-mail:zhaoxue@nju.edu.cn;Wenhao Yan,E-mail:yanwenhao@mail.hzau.edu.cn;Dijun Chen,E-mail:dijunchen@nju.edu.cn;Chao He,E-mail:hechao@mail.hzau.edu.cn
Supported by:
Shanni Cao, Xue Zhao, Zhuojin Li, Ranran Yu, Yuqi Li, Xinkai Zhou, Wenhao Yan, Dijun Chen, Chao He. Comprehensive integration of single-cell transcriptomic data illuminates the regulatory network architecture of plant cell fate specification[J]. Plant Diversity, 2024, 46(03): 372-385.
Add to citation manager EndNote|Ris|BibTeX
[1] Aibar, S., Gonzalez-Blas, C.B., Moerman, T., et al., 2017. SCENIC:single-cell regulatory network inference and clustering. Nat. Methods 14, 1083-1086. [2] Armbruster, U., Labs, M., Pribil, M., et al., 2013. Arabidopsis CURVATURE THYLAKOID1 proteins modify thylakoid architecture by inducing membrane curvature. Plant Cell 25, 2661-2678. [3] Bakshi, M., Oelmuller, R., 2014. WRKY transcription factors:Jack of many trades in plants. Plant Signal. Behav. 9, e27700. [4] Barberon, M., 2017. The endodermis as a checkpoint for nutrients. New Phytol. 213, 1604-1610. [5] Beisson, F., Li-Beisson, Y., Pollard, M., 2012. Solving the puzzles of cutin and suberin polymer biosynthesis. Curr. Opin. Plant Biol. 15, 329-337. [6] Bemer, M., van Dijk, A.D.J., Immink, R.G.H., et al., 2017. Cross-family transcription factor interactions:an additional layer of gene regulation. Trends Plant Sci. 22, 66-80. [7] Blei, D.M., Ng, A.Y., Jordan, M.I., 2003. Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993-1022. [8] Brady, S.M., Zhang, L., Megraw, M., et al., 2011. A stele-enriched gene regulatory network in the Arabidopsis root. Mol. Syst. Biol. 7, 459. [9] Burkart, R.C., Strotmann, V.I., Kirschner, G.K., et al., 2022. PLETHORA-WOX5 interaction and subnuclear localization control Arabidopsis root stem cell maintenance. EMBO Rep. 23, e54105. [10] Butler, A., Hoffman, P., Smibert, P., et al., 2018. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411-420. [11] Buttner, M., Miao, Z., Wolf, F.A., et al., 2019. A test metric for assessing single-cell RNA-seq batch correction. Nat. Methods 16, 43-49. [12] Chen, D., Yan, W., Fu, L.Y., et al., 2018. Architecture of gene regulatory networks controlling flower development in Arabidopsis thaliana. Nat. Commun. 9, 4534. [13] Cuperus, J.T., 2022. Single-cell genomics in plants:current state, future directions, and hurdles to overcome. Plant Physiol. 188, 749-755. [14] De Rybel, B., Mahonen, A.P., Helariutta, Y., et al., 2016. Plant vascular development:from early specification to differentiation. Nat. Rev. Mol. Cell Biol. 17, 30-40. [15] Denyer, T., Ma, X., Klesen, S., et al., 2019. Spatiotemporal developmental trajectories in the Arabidopsis root revealed using high-throughput single-cell RNA sequencing. Dev. Cell 48, 840-852.e845. [16] Doblas, V.G., Geldner, N., Barberon, M., 2017. The endodermis, a tightly controlled barrier for nutrients. Curr. Opin. Plant Biol. 39, 136-143. [17] Dorrity, M.W., Alexandre, C.M., Hamm, M.O., et al., 2021. The regulatory landscape of Arabidopsis thaliana roots at single-cell resolution. Nat. Commun. 12, 3334. [18] Drapek, C., Sparks, E.E., Benfey, P.N., 2017. Uncovering gene regulatory networks controlling plant cell differentiation. Trends Genet. 33, 529-539. [19] Dyson, B.C., Allwood, J.W., Feil, R., et al., 2015. Acclimation of metabolism to light in Arabidopsis thaliana:the glucose 6-phosphate/phosphate translocator GPT2 directs metabolic acclimation. Plant Cell Environ. 38, 1404-1417. [20] Farmer, A., Thibivilliers, S., Ryu, K.H., et al., 2021. Single-nucleus RNA and ATAC sequencing reveals the impact of chromatin accessibility on gene expression in Arabidopsis roots at the single-cell level. Mol. Plant 14, 372-383. [21] Fornes, O., Castro-Mondragon, J.A., Khan, A., et al., 2020. JASPAR 2020:update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 48, D87-d92. [22] Franke, R., Briesen, I., Wojciechowski, T., et al., 2005. Apoplastic polyesters in Arabidopsis surface tissues--a typical suberin and a particular cutin. Phytochemistry 66, 2643-2658. [23] Franke, R., Schreiber, L., 2007. Suberin--a biopolyester forming apoplastic plant interfaces. Curr. Opin. Plant Biol. 10, 252-259. [24] Fujii, S., Kobayashi, K., Lin, Y.C., et al., 2022. Impacts of phosphatidylglycerol on plastid gene expression and light induction of nuclear photosynthetic genes. J. Exp. Bot. 73, 2952-2970. [25] Gala, H.P., Lanctot, A., Jean-Baptiste, K., et al., 2021. A single-cell view of the transcriptome during lateral root initiation in Arabidopsis thaliana. Plant Cell 33, 2197-2220. [26] Granja, J.M., Corces, M.R., Pierce, S.E., et al., 2021. ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nat. Genet. 53, 403-411. [27] Grant, C.E., Bailey, T.L., Noble, W.S., 2011. FIMO:scanning for occurrences of a given motif. Bioinformatics 27, 1017-1018. [28] Gu, Z., 2022. Complex heatmap visualization. iMeta 1, e43. [29] Guiziou, S., Chu, J.C., Nemhauser, J.L., 2021. Decoding and recoding plant development. Plant Physiol. 187, 515-526. [30] Guo, Y., Qin, G., Gu, H., et al., 2009. Dof5.6/HCA2, a Dof transcription factor gene, regulates interfascicular cambium formation and vascular tissue development in Arabidopsis. Plant Cell 21, 3518-3534. [31] Hafemeister, C., Satija, R., 2019. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296. [32] Haga, N., Kobayashi, K., Suzuki, T., et al., 2011. Mutations in MYB3R1 and MYB3R4 cause pleiotropic developmental defects and preferential down-regulation of multiple G2/M-specific genes in Arabidopsis. Plant Physiol. 157, 706-717. [33] Han, X., Wang, R., Zhou, Y., et al., 2018. Mapping the mouse cell atlas by microwell-seq. Cell 172, 1091-1107.e1017. [34] Han, X., Zhou, Z., Fei, L., et al., 2020. Construction of a human cell landscape at single-cell level. Nature 581, 303-309. [35] Hao, Y., Hao, S., Andersen-Nissen, E., et al., 2021. Integrated analysis of multimodal single-cell data. Cell 184, 3573-3587.e3529. [36] He, Z., Luo, Y., Zhou, X., et al., 2023. scPlantDB:a comprehensive database for exploring cell types and markers of plant cell atlases. Nucleic Acids Res. 52, D1629-d1638. [37] Hernandez-Reyes, C., Lichtenberg, E., Keller, J., et al., 2022. NIN-Like proteins:interesting players in rhizobia-induced nitrate signaling response during interaction with non-legume host Arabidopsis thaliana. Mol. Plant Microbe Interact. 35, 230-243. [38] Hinckley, W.E., Keymanesh, K., Cordova, J.A., et al., 2019. The HAC1 histone acetyltransferase promotes leaf senescence and regulates the expression of ERF022. Plant Direct. 3, e00159. [39] Holbein, J., Shen, D., Andersen, T.G., 2021. The endodermal passage cell-just another brick in the wall?New Phytol. 230, 1321-1328. [40] Hosmani, P.S., Kamiya, T., Danku, J., et al., 2013. Dirigent domain-containing protein is part of the machinery required for formation of the lignin-based casparian strip in the root. Proc. Natl. Acad. Sci. U. S. A. 110, 14498-14503. [41] Huysmans, M., Buono, R.A., Skorzinski, N., et al., 2018. NAC transcription factors ANAC087 and ANAC046 control distinct aspects of programmed cell death in the Arabidopsis columella and lateral root cap. Plant Cell 30, 2197-2213. [42] Jean-Baptiste, K., McFaline-Figueroa, J.L., Alexandre, C.M., et al., 2019. Dynamics of gene expression in single root cells of Arabidopsis thaliana. Plant Cell 31, 993-1011. [43] Jha, S.G., Borowsky, A.T., Cole, B.J., et al., 2021. Vision, challenges and opportunities for a plant cell atlas. Elife 10, e66877. [44] Jolma, A., Yin, Y., Nitta, K.R., et al., 2015. DNA-dependent formation of transcription factor pairs alters their binding specificity. Nature 527, 384-388. [45] Jones, R.C., Karkanias, J., Krasnow, M.A., et al., 2022. The tabula sapiens:a multiple-organ, single-cell transcriptomic atlas of humans. Science 376, eabl4896. [46] Kamada, T., Kawai, S., 1989. An algorithm for drawing general undirected graphs. Inf. Process. Lett. 31, 7-15. [47] Kamiya, T., Borghi, M., Wang, P., et al., 2015. The MYB36 transcription factor orchestrates Casparian strip formation. Proc. Natl. Acad. Sci. U. S. A. 112, 10533-10538. [48] Kareem, A., Durgaprasad, K., Sugimoto, K., et al., 2015. PLETHORA Genes Control Regeneration by a Two-Step Mechanism. Curr. Biol. 25, 1017-1030. [49] Kaufmann, K., Airoldi, C.A., 2018. Master regulatory transcription factors in plant development:a blooming perspective. Methods Mol. Biol. 1830, 3-22. [50] Kim, J.Y., Symeonidi, E., Pang, T.Y., et al., 2021. Distinct identities of leaf phloem cells revealed by single cell transcriptomics. Plant Cell 33, 511-530. [51] Liu, J., Sheng, L., Xu, Y., et al., 2014. WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis. Plant Cell 26, 1081-1093. [52] Liu, Y., Wang, T., Zhou, B., et al., 2021. Robust integration of multiple single-cell RNA sequencing datasets using a single reference space. Nat. Biotechnol. 39, 877-884. [53] Liu, Z., Zhou, Y., Guo, J., et al., 2020. Global dynamic molecular profiling of stomatal lineage cell development by single-cell RNA sequencing. Mol. Plant 13, 1178-1193. [54] Long, Y., Liu, Z., Jia, J., et al., 2021. FlsnRNA-seq:protoplasting-free full-length single-nucleus RNA profiling in plants. Genome Biol. 22, 66. [55] Lopez-Anido, C.B., Vaten, A., Smoot, N.K., et al., 2021. Single-cell resolution of lineage trajectories in the Arabidopsis stomatal lineage and developing leaf. Dev. Cell 56, 1043-1055.e1044. [56] Lowe, K., Wu, E., Wang, N., et al., 2016. Morphogenic regulators baby boom and wuschel improve monocot transformation. Plant Cell 28, 1998-2015. [57] Luecken, M.D., Buttner, M., Chaichoompu, K., et al., 2022. Benchmarking atlas-level data integration in single-cell genomics. Nat. Methods 19, 41-50. [58] Mahmood, K., Zeisler-Diehl, V.V., Schreiber, L., et al., 2019. Overexpression of ANAC046 promotes suberin biosynthesis in roots of Arabidopsis thaliana. Int. J. Mol. Sci. 20, 6117. [59] Moreno-Risueno, M.A., Sozzani, R., Yardimci, G.G., et al., 2015. Transcriptional control of tissue formation throughout root development. Science 350, 426-430. [60] Nasios, N., Bors, A.G., 2006. Variational learning for Gaussian mixture models. IEEE Trans. Syst. Man Cybern. 36, 849-862. [61] Newman, A.M., Steen, C.B., Liu, C.L., et al., 2019. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 37, 773-782. [62] Ogasawara, H., Kaimi, R., Colasanti, J., et al., 2011. Activity of transcription factor JACKDAW is essential for SHR/SCR-dependent activation of SCARECROW and MAGPIE and is modulated by reciprocal interactions with MAGPIE, SCARECROW and SHORT ROOT. Plant Mol. Biol. 77, 489-499. [63] Ou, Y., Tao, B., Wu, Y., et al., 2022. Essential roles of SERKs in the ROOT MERISTEM GROWTH FACTOR-mediated signaling pathway. Plant Physiol. 189, 165-177. [64] Procko, C., Lee, T., Borsuk, A., et al., 2022. Leaf cell-specific and single-cell transcriptional profiling reveals a role for the palisade layer in UV light protection. Plant Cell 34, 3261-3279. [65] Qian, Y., Huang, S.-s.C., 2020. Improving plant gene regulatory network inference by integrative analysis of multi-omics and high resolution data sets. Curr. Opin. Syst. Biol. 22, 8-15. [66] Qu, J., Yang, F., Zhu, T., et al., 2022. A reference single-cell regulomic and transcriptomic map of cynomolgus monkeys. Nat. Commun. 13, 4069. [67] Ramirez-Parra, E., Desvoyes, B., Gutierrez, C., 2005. Balance between cell division and differentiation during plant development. Int. J. Dev. Biol. 49, 467-477. [68] Regev, A., Teichmann, S.A., Lander, E.S., et al., 2017. The Human Cell Atlas. Elife 6, e27041. [69] Reiter, F., Wienerroither, S., Stark, A., 2017. Combinatorial function of transcription factors and cofactors. Curr. Opin. Genet. Dev. 43, 73-81. [70] Reynoso, M.A., Borowsky, A.T., Pauluzzi, G.C., et al., 2022. Gene regulatory networks shape developmental plasticity of root cell types under water extremes in rice. Dev. Cell 57, 1177-1192.e1176. [71] Rhee, S.Y., Birnbaum, K.D., Ehrhardt, D.W., 2019. Towards Building a Plant Cell Atlas. Trends Plant Sci. 24, 303-310. [72] Rich-Griffin, C., Eichmann, R., Reitz, M.U., et al., 2020. Regulation of cell type-specific immunity networks in Arabidopsis roots. Plant Cell 32, 2742-2762. [73] Roppolo, D., De Rybel, B., Denervaud Tendon, V., et al., 2011. A novel protein family mediates Casparian strip formation in the endodermis. Nature 473, 380-383. [74] Roszak, P., Heo, J.O., Blob, B., et al., 2021. Cell-by-cell dissection of phloem development links a maturation gradient to cell specialization. Science 374, eaba5531. [75] Rozenblatt-Rosen, O., Stubbington, M.J.T., Regev, A., et al., 2017. The Human Cell Atlas:from vision to reality. Nature 550, 451-453. [76] Ryu, K.H., Huang, L., Kang, H.M., et al., 2019. Single-cell RNA sequencing resolves molecular relationships among individual plant cells. Plant Physiol. 179, 1444-1456. [77] Ryu, Y., Han, G.H., Jung, E., et al., 2023. Integration of single-cell RNA-seq datasets:a review of computational methods. Mol. Cells 46, 106-119. [78] Samaradivakara, S.P., Chen, H., Lu, Y.J., et al., 2022. Overexpression of NDR1 leads to pathogen resistance at elevated temperatures. New Phytol. 235, 1146-1162. [79] Santos-Mendoza, M., Dubreucq, B., Baud, S., et al., 2008. Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis. Plant J. 54, 608-620. [80] Serrano-Ron, L., Perez-Garcia, P., Sanchez-Corrionero, A., et al., 2021. Reconstruction of lateral root formation through single-cell RNA sequencing reveals order of tissue initiation. Mol. Plant 14, 1362-1378. [81] Seyfferth, C., Renema, J., Wendrich, J.R., et al., 2021. Advances and opportunities in single-cell transcriptomics for plant research. Annu. Rev. Plant Biol. 72, 847-866. [82] Shahan, R., Hsu, C.W., Nolan, T.M., et al., 2022. A single-cell Arabidopsis root atlas reveals developmental trajectories in wild-type and cell identity mutants. Dev. Cell 57, 543-560.e549. [83] Shaw, R., Tian, X., Xu, J., 2021. Single-cell transcriptome analysis in plants:advances and challenges. Mol. Plant 14, 115-126. [84] Shulse, C.N., Cole, B.J., Ciobanu, D., et al., 2019. High-throughput single-cell transcriptome profiling of plant cell types. Cell Rep. 27, 2241-2247.e2244. [85] Luhua, S., Hegie, A., Suzuki, N., et al., 2013. Linking genes of unknown function with abiotic stress responses by high-throughput phenotype screening. Physiol. Plant 148, 322-333. [86] Stahl, Y., Simon, R., 2010. Plant primary meristems:shared functions and regulatory mechanisms. Curr. Opin. Plant Biol. 13, 53-58. [87] Stuart, T., Butler, A., Hoffman, P., et al., 2019. Comprehensive integration of single-cell data. Cell 177, 1888-1902.e1821. [88] Subramanian, A., Tamayo, P., Mootha, V.K., et al., 2005. Gene set enrichment analysis:a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102, 15545-15550. [89] Suo, S., Zhu, Q., Saadatpour, A., et al., 2018. Revealing the critical regulators of cell identity in the mouse cell atlas. Cell Rep. 25, 1436-1445.e1433. [90] Tanaka, H., Osakabe, Y., Katsura, S., et al., 2012. Abiotic stress-inducible receptor-like kinases negatively control ABA signaling in Arabidopsis. Plant J. 70, 599-613. [91] Taylor-Teeples, M., Lin, L., de Lucas, M., et al., 2015. An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517, 571-575. [92] Toledo-Ortiz, G., Johansson, H., Lee, K.P., et al., 2014. The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription. PLos Genet. 10, e1004416. [93] Tripathi, R.K., Wilkins, O., 2021. Single cell gene regulatory networks in plants:Opportunities for enhancing climate change stress resilience. Plant Cell Environ. 44, 2006-2017. [94] Urano, K., Maruyama, K., Koyama, T., et al., 2022. CIN-like TCP13 is essential for plant growth regulation under dehydration stress. Plant Mol. Biol. 108, 257-275. [95] Ursache, R., De Jesus Vieira Teixeira, C., Denervaud Tendon, V., et al., 2021. GDSL-domain proteins have key roles in suberin polymerization and degradation. Nat. Plants 7, 353-364. [96] Vishwanath, S.J., Delude, C., Domergue, F., et al., 2015. Suberin:biosynthesis, regulation, and polymer assembly of a protective extracellular barrier. Plant Cell Rep. 34, 573-586. [97] Vlieghe, K., Boudolf, V., Beemster, G.T., et al., 2005. The DP-E2F-like gene DEL1 controls the endocycle in Arabidopsis thaliana. Curr. Biol. 15, 59-63. [98] Walley, J.W., Kelley, D.R., Nestorova, G., et al., 2010. Arabidopsis deadenylases AtCAF1a and AtCAF1b play overlapping and distinct roles in mediating environmental stress responses. Plant Physiol. 152, 866-875. [99] Weirauch, M.T., Yang, A., Albu, M., et al., 2014. Determination and inference of eukaryotic transcription factor sequence specificity. Cell 158, 1431-1443. [100] Welch, D., Hassan, H., Blilou, I., et al., 2007. Arabidopsis JACKDAW and MAGPIE zinc finger proteins delimit asymmetric cell division and stabilize tissue boundaries by restricting SHORT-ROOT action. Genes Dev. 21, 2196-2204. [101] Wendrich, J.R., Yang, B., Vandamme, N., et al., 2020. Vascular transcription factors guide plant epidermal responses to limiting phosphate conditions. Science 370. [102] Wu, S., Chen, D., Snyder, M.P., 2022. Network biology bridges the gaps between quantitative genetics and multi-omics to map complex diseases. Curr. Opin. Chem. Biol. 66, 102101. [103] Wu, T., Hu, E., Xu, S., et al., 2021. clusterProfiler 4.0:A universal enrichment tool for interpreting omics data. The Innovation 2, 100141. [104] Xiong, F., Zhang, B.K., Liu, H.H., et al., 2020. Transcriptional regulation of PLETHORA1 in the root meristem through an importin and its two antagonistic cargos. Plant Cell 32, 3812-3824. [105] Yadav, V., Molina, I., Ranathunge, K., et al., 2014. ABCG transporters are required for suberin and pollen wall extracellular barriers in Arabidopsis. Plant Cell 26, 3569-3588. [106] Yan, W., Chen, D., Kaufmann, K., 2016. Molecular mechanisms of floral organ specification by MADS domain proteins. Curr. Opin. Plant Biol. 29, 154-162. [107] Yang, B., Minne, M., Brunoni, F., et al., 2021. Non-cell autonomous and spatiotemporal signalling from a tissue organizer orchestrates root vascular development. Nat. Plants 7, 1485-1494. [108] Yu, Y., Zhang, H., Long, Y., et al., 2022. Plant Public RNA-seq Database:a comprehensive online database for expression analysis of ~45000 plant public RNA-Seq libraries. Plant Biotechnol. J. 20, 806-808. [109] Zhang, T.Q., Chen, Y., Wang, J.W., 2021. A single-cell analysis of the Arabidopsis vegetative shoot apex. Dev. Cell 56, 1056-1074.e1058. [110] Zhang, T.Q., Xu, Z.G., Shang, G.D., et al., 2019. A single-cell RNA sequencing profiles the developmental landscape of Arabidopsis root. Mol. Plant 12, 648-660. [111] Zheng, X., Lan, J., Yu, H., et al., 2022. Arabidopsis transcription factor TCP4 represses chlorophyll biosynthesis to prevent petal greening. Plant Commun. 3, 100309. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||