Plant Diversity ›› 2024, Vol. 46 ›› Issue (03): 309-320.DOI: 10.1016/j.pld.2024.03.010
• Articles • Previous Articles
Zi-Yan Zhanga,b, He-Xiao Xiac, Meng-Jie Yuana,b, Feng Gaoa,b, Wen-Hua Baoa,b, Lan Jina,b, Min Lia,b, Yong Lia,b,d
Received:
2024-01-05
Revised:
2024-03-22
Published:
2024-05-20
Contact:
Yong Li,E-mail:20220053@imnu.edu.cn
Supported by:
Zi-Yan Zhang, He-Xiao Xia, Meng-Jie Yuan, Feng Gao, Wen-Hua Bao, Lan Jin, Min Li, Yong Li. Multi-omics analyses provide insights into the evolutionary history and the synthesis of medicinal components of the Chinese wingnut[J]. Plant Diversity, 2024, 46(03): 309-320.
Add to citation manager EndNote|Ris|BibTeX
[1] Adal, A.M., Sarker, L.S., Lemke, A.D., et al., 2017. Isolation and functional characterization of a methyl jasmonate-responsive 3-carene synthase from Lavandula x intermedia. Plant Mol. Biol. 93, 641-657. [2] Ashburner, M., Ball, C.A., Blake, J.A., et al., 2000. Gene ontology:tool for the unification of biology. Nat. Genet. 25, 25-29. [3] Bao, Z., Eddy, S.R., 2002. Automated de novo identification of repeat sequence families in sequenced genomes. Genome Res. 12, 1269-1276. [4] Berckmans, B., Vassileva, V., Schmid, S.P., et al., 2011. Auxin-dependent cell cycle reactivation through transcriptional regulation of Arabidopsis E2Fa by lateral organ boundary proteins. Plant Cell 23, 3671-3683. [5] Birney, E., Clamp, M., Durbin, R., 2004. GeneWise and genomewise. Genome Res. 14, 988-995. [6] Bo, X., Yu, K., 2021. Study on extraction and chemical constituents of volatile oil from the leaves of Pterocarya stenoptera C. DC. Hubei Agr. Sci. 60, 119-123. [7] Boeckmann, B., Bairoch, A., Apweiler, R., et al., 2003. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365-370. [8] Buchfink, B., Xie, C., Huson, D.H., 2015. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59-60. [9] Burton, J.N., Adey, A., Patwardhan, R.P., et al., 2013. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat. Biotechnol. 31, 1119-1125. [10] Chen, N.G., Wang, P.R., Li, C.M., et al., 2018. A Single nucleotide mutation of the gene participating in the MEP pathway forisoprenoid biosynthesis causes a green-revertible yellow leaf phenotype in rice. Plant Cell Physiol. 59, 1905-1917. [11] Cheng, H., Concepcion, G.T., Feng, X., et al., 2021. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18,170-175. [12] Cheng, T., Zhang, K., Guo, J., et al., 2022. Highly efficient biosynthesis of β-caryophyllene with a new sesquiterpene synthase from tobacco. Biotechnol. Biof. Biop. 15, 39. [13] Chohan, T.A., Chohan, T.A., Mumtaz, M.Z., et al., 2023. Insecticidal potential of α-pinene and β-caryophyllene against Myzus persicae and their impacts on gene expression. Phyton-Int. J. Exp. Bot. 92, 1943-1954. [14] Dang, J.J., Lin, G.Y., Liu, L.C., et al., 2022. Comparison of pulegone and estragole chemotypes provides new insight into volatile oil biosynthesis of Agastache rugosa. Front. Plant Sci. 13, 850130. [15] Deng, Y.Y., Li, J.Q., Wu, S.F., et al., 2006. Integrated NR database in protein annotation system and its localization. Comp. Eng. 32, 71-74. [16] Ding, Y.M., Pang, X.X., Cao, Y., et al., 2023. Genome structure-based Juglandaceae phylogenies contradict alignment-based phylogenies and substitution rates vary with DNA repair genes. Nat. Commun. 14, 617. [17] Doyle, J.J., Doyle, J.L., 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. bull. 19, 11-15. [18] Ellinghaus, D., Kurtz, S., Willhoeft, U., 2008. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinf. 9, 18. [19] Emms, D.M., Kelly, S., 2019. OrthoFinder:phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238. [20] Finn, R.D., Mistry, J., Schuster-Bockler, B., et al., 2006. Pfam:clans, web tools and services. Nucleic Acids Res. 34, D247-D251. [21] Flynn, J.M., Hubley, R., Goubert, C., et al., 2020. RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl. Acad. Sci. U.S.A. 117, 9451-9457. [22] Gao, F.Z., Liu, B.F., Li, M., et al., 2018. Identification and characterization of terpene synthase genes accounting for volatile terpene emissions in flowers of Freesia x hybrida. J. Exp. Bot. 69, 4249-4265. [23] Gao, N., 2009. Study on Pllutant in the Water Removal Efficiency of Several Trees Commonly Used in Urban. Beijing:Beijing Forestry University,(Master thesis). [24] Griffiths-Jones, S., Moxon, S., Marshall, M., et al., 2005. Rfam:annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 33, D121-D124. [25] Haas, B.J., Delcher, A.L., Mount, S.M., et al., 2003. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654-5666. [26] Haas, B.J., Salzberg, S.L., Zhu, W., et al., 2008. Automated eukaryotic gene structure annotation using EVidence Modeler and the Program to Assemble spliced alignments. Genome Biol. 9, R7. [27] Han, M.V., Thomas, G.W.C., Lugo-Martinez, J., et al., 2013. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. Mol. Biol. Evol. 30, 1987-1997. [28] Huerta-Cepas, J., Szklarczyk, D., Heller, D., et al., 2019. eggNOG 5.0:a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309-D314. [29] Jethva, J., Lichtenauer, S., Schmidt-Schippers, R., et al., 2023. Mitochondrial alternative NADH dehydrogenases NDA1 and NDA2 promote survival of reoxygenation stress in Arabidopsis by safeguarding photosynthesis and limiting ROS generation. New Phytol. 238, 96-112. [30] Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., et al., 2017. ModelFinder:fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587-589. [31] Kanehisa, M., Sato, Y., Kawashima, M., et al., 2016. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457-D462. [32] Katoh, K., Asimenos, G., Toh, H., 2009. Multiple alignment of DNA sequences with MAFFT. Methods Mol. Biol. 537, 39-64. [33] Keilwagen, J., Wenk, M., Erickson, J.L., et al., 2016. Using intron position conservation for homology-based gene prediction. Nucleic Acids Res. 44, e89. [34] Kim, D., Landmead, B., Salzberg, S.L. 2015. HISAT:a fast spliced aligner with low memory requirements. Nat. Methods 12, 357-360. [35] Kind, T., Wohlgemuth, G., Lee, D.Y., et al., 2009. FiehnLib:mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal. Chem. 81, 10038-10048. [36] Korf, I., 2004. Gene finding in novel genomes. BMC Bioinf. 5, 59. [37] Kuang, K.R., Li, P.Q., 1979. Flora of China (Volume 21). Beijing:Science Press, pp. 21-30. [38] Kumar, S., Stecher, G., Suleski, M., et al., 2017, Timetree:a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34, 1812-1819. [39] Kumbasli, M., Bauce, E., 2013. Spruce budworm biological and nutritional performance responses to varying levels of monoterpenes. iForest-Biogeosci. Fores. 6, 117. [40] Langfelder, P., Horvath, S., 2008. WGCNA:an R package for weighted correlation network analysis. BMC Bioinf. 9, 559. [41] Li, C.X., Wei, H., Lv, Q., Zhang, Y., 2010. Effects of water stresses on growth and contents of oxalate and tartarate in the roots of Chinese wingnut (Pterocarya stenoptera) seedlings. Sci. Silvae Sin. 46, 81-88. [42] Li, D.X., Cui, C.B., Cai, B., et al., 2007. Research progress of Pterocarya. Pharm. J. Chinese P. L. A. 23, 365-369. [43] Li, H., 2021. New strategies to improve minimap2 alignment accuracy. Bioinformatics 37, 4572-4574. [44] Li, H., Durbin, R., 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760. [45] Li, H., Durbin, R., 2011. Inference of human population history from individual whole-genome sequences. Nature 475, 493-496. [46] Li, X.R., Zhang, X.X., Xing, M.Y., et al., 2021. Antioxidant and antibacterial activities of Pterocarya stenoptera bark extract and its mechanism on Staphylococcus aureus through cell membrane damage. Bioresources 16, 3771-3782. [47] Li, J.X., Zhu, X.H., Li, Y., et al., 2018. Adaptive genetic differentiation in Pterocarya stenoptera(Juglandaceae) driven by multiple environmental variables were revealed by landscape genomics. BMC Plant Biol. 18, 306. [48] Li, L.F., Cushman, S.A., He, Y.X., et al., 2022. Landscape genomics reveals genetic evidence of local adaptation in a widespread tree, the Chinese wingnut (Pterocarya stenoptera). J. Systemat. Evol. 60, 386-397. [49] Li, Y., Shi, L.C., Yang, J., et al., 2021. Physiological and transcriptional changes provide insights into the effect of root waterlogging on the aboveground part of Pterocarya stenoptera. Genomics 113, 2583-2590. [50] Li, Y., Si, Y.T., He, Y.X., et al., 2021. Comparative analysis of drought-responsive and-adaptive genes in Chinese wingnut (Pterocarya stenoptera C. DC). BMC Genom. 22, 155. [51] Li, Y., Wang, F., Pei, N.C., et al., 2023. The updated weeping forsythia genome reveals the genomic basis for the evolution and the forsythin and forsythoside A biosynthesis. Hortic.Plant J. 9, 1149-1161. [52] Liu, Y., Schroder, J., Schmidt, B., 2013. Musket:a multistage k-mer spectrum-based error corrector for Illumina sequence data. Bioinformatics 29, 308-315. [53] Liu, Z.K., Fu, Y.H., Wang, H., et al., 2023. The high-quality sequencing of the Brassica rapa'XiangQingCai'genome and exploration of genome evolution and genes related to volatile aroma. Hortic. Res. 10, uhad187. [54] Loman, T., 2017. A novel method for predicting ribosomal RNA genes in prokaryotic genomes. Degree Projects in Bioinformatics. http://lup.lub.lu.se/student-papers/record/8914064. [55] Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550. [56] Lowe, T.M., Eddy, S.R., 1997. tRNAscan-SE:a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955-964. [57] Mi, H., Muruganujan, A., Ebert, D., et al., 2019. PANTHER version 14:more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 47, D419-D426. [58] Nanjing University of Traditional Chinese Medicine, 1997. Dictionary of Traditional Chinese Medicine. Shanghai:Shanghai Science& Technology Press. [59] Nawrocki, E.P., Eddy, S.R., 2013. Infernal 1.1:100-fold faster RNA homology searches. Bioinformatics 29, 2933-2935. [60] Niu, F.X., He, X., Wu, Y.Q., et al., 2018. Enhancing Production of Pinene in Escherichia coli by using a combination of tolerance, evolution, and modular co-culture engineering. Front. Microbiol. 9, 1623. [61] Ou, S., Jiang, N., 2018. LTR_retriever:a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiol. 176, 1410-1422. [62] Pan Y. 2021. Propagation and cultivation techniques for ginkgo and Pterocarya stenoptera trees in Changji prefecture. Forest. Xinjiang 1, 22-24. [63] Parra, G., Bradnam, K., Korf, I., 2007. CEGMA:a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23, 1061-1067. [64] Pertea, M., Pertea, G.M., Antonescu, C.M., et al., 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290-295. [65] Price, A.L., Jones, N.C., Pevzner, P.A., 2005. De novo identification of repeat families in large genomes. Bioinformatics 21, i351-i358. [66] Qian, Z.H., Li, Y., Li, M.W., et al., 2019. Molecular phylogeography analysis reveals population dynamics and genetic divergence of a widespread tree Pterocarya stenoptera in China. Front. Genet. 10, 1089. [67] Rai, N., Kumari, S., Singh, S., et al., 2024. Modulation of morpho-physiological attributes and in situ analysis of secondary metabolites using Raman spectroscopy in response to red and blue light exposure in Artemisia annua. Environ. Exp. Bot. 217, 105563. [68] Richter, A., Seidl-Adams, I., Kollner, T.G., et al., 2015. A small, differentially regulated family of farnesyl diphosphate synthases in maize (Zea mays) provides farnesyl diphosphate for the biosynthesis of herbivore-induced sesquiterpenes. Planta 241, 1351-1361. [69] Shannon, P., Markiel, A., Ozier, O., et al., 2003. Cytoscape:a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498-2504. [70] Shao, Y., 2016. Study on Juglandaceae Fossils from the Late Miocene of Lincang, Yunnan Province, China. Lanzhou:Lanzhou University,(Master's thesis). [71] She, R., Chu, J.S., Wang, K., et al., 2009. GenBlastA:enabling BLAST to identify homologous gene sequences. Genome Res. 19, 143-149. [72] Simao, F.A., Waterhouse, R.M., Ioannidis, P., et al., 2015. BUSCO:assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210-3212. [73] Sollars, E.S., Harper, A.L., Kelly, L.J., et al., 2017. Genome sequence and genetic diversity of European ash trees. Nature 541, 212-216. [74] Stanke, M., Diekhans, M., Baertsch, R., et al., 2008. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24, 637-644. [75] Suyama, M., Torrents, D., Bork, P., 2006. PAL2NAL:robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34, W609-W612. [76] Talavera, G., Castresana, J., 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564-577. [77] Tang, H., Krishnakumar, V., Li, J., et al., 2015. Jcvi:JCVI Utility Libraries. Zenodo. [78] Tang, S., Lomsadze, A., Borodovsky, M., 2015. Identification of protein coding regions in RNA transcripts. Nucleic Acids Res. 43, e78. [79] Tarailo-Graovac, M., Chen, N., 2009. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinformatics 25, 4.10.1-4:4.10.14. [80] Tatusov, R.L., Fedorova, N.D., Jackson, J.D., et al., 2003. The COG database:an updated version includes eukaryotes. BMC Bioinf. 4, 41. [81] Tommasini, D., Fogel, B.L. 2023. multiWGCNA:an R package for deep mining gene co-expression networks in multi-trait expression data. BMC Bioinf. 24, 115. [82] Tripathi, A.K., Prajapati, V., Khanuja, S.P.S., et al., 2003. Effect of d-limonene on three stored-product beetles. J. Econ. Entomol. 96, 990-995. [83] Wang, W., Shao, A., Xu, X., et al., 2022. Comparative genomics reveals the molecular mechanism of salt adaptation for zoysiagrasses. BMC Plant Biol. 22, 355. [84] Wang, Y., Tang, H., Debarry, J.D., et al., 2012. MCScanX:a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49. [85] Wickham, H. 2009. Ggplot2:Elegant Graphics for Data Analysis, second ed. New York:Springer. [86] Winter, G., Todd, C.D., Trovato, M., et al., 2015. Physiological implications of arginine metabolism in plants. Front. Plant Sci. 6, 534. [87] Xie, S., Wu, G., Ren, R.H., et al., 2023. Transcriptomic and metabolic analyses reveal differences in monoterpene profiles and the underlying molecular mechanisms in six grape varieties with different flavors. LWT--Food Sci. Technol. 174, 114442. [88] Xie, S.P., Manchester, S.R., Liu, K.N., et al., 2013. Sp N., A leaf fossil of Rutaceae from the late Miocene of Yunnan, China. Int. J. Plant Sci. 174, 1201-1207. [89] Xu, Y.M., Zhou, M.H., Shi, Y.H., et al., 2002. Advance on the biological properties and resources utilization of Pterocarya stenoptera. J. Northeast For. Univ. 30, 42-48. [90] Xu, Z., Wang, H., 2007. LTR_FINDER:an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35, W265-W268. [91] Yang, Z. 1997. PAML:a program package for phylogenetic analysis by maximum likelihood. Comput. Appl. Biosci. 13, 555-556. [92] Ye, X.F., Li, Y., Liu, H.L., et al., 2020. Physiological analysis and transcriptome sequencing reveal the effects of drier air humidity stress on Pterocarya stenoptera. Genomics 112, 5005-5011. [93] Yin, C., Sun, F., Rao, Q., et al., 2020. Chemical compositions and antimicrobial activities of the essential oil from Pterocarya stenoptera C. DC. Nat. Prod. Res. 34, 2828-2831. [94] Yu, G.C., Wang, L.G., Han, Y.Y., et al., 2012. clusterProfiler:an R package for comparing biological themes among gene clusters. OMICS 16, 284-287. [95] Zhang, W., Wang, S.C. Li, Y., 2023. Molecular mechanism of thiamine in mitigating drought stress in Chinese wingnut (Pterocarya stenoptera):insights from transcriptomics. Ecotoxicol. Environ. Saf. 263, 115307. [96] Zhu, C.Y., Peng, C., Qiu, D.Y., et al., 2022. Metabolic profiling and transcriptional analysis of carotenoid accumulation in a red-fleshed mutant of pummelo (Citrus grandis). Molecules 27, 4595. [97] Zwaenepoel, A., Van de Peer, Y., 2019. WGD-simple command line tools for the analysis of ancient whole-genome duplications. Bioinformatics 35, 2153-2155. |
[1] | Hai-Su Hu, Jiu-Yang Mao, Xue Wang, Yu-Ze Liang, Bei Jiang, De-Quan Zhang. Plastid phylogenomics and species discrimination in the “Chinese” clade of Roscoea (Zingiberaceae) [J]. Plant Diversity, 2023, 45(05): 523-534. |
[2] | Na Su, Richard G.J. Hodel, Xi Wang, Jun-Ru Wang, Si-Yu Xie, Chao-Xia Gui, Ling Zhang, Zhao-Yang Chang, Liang Zhao, Daniel Potter, Jun Wen. Molecular phylogeny and inflorescence evolution of Prunus (Rosaceae) based on RAD-seq and genome skimming analyses [J]. Plant Diversity, 2023, 45(04): 397-408. |
[3] | Xue-Min Xu, Dan-Hui Liu, Shi-Xin Zhu, Zhen-Long Wang, Zhen Wei, Quan-Ru Liu. Phylogeny of Trigonotis in China—with a special reference to its nutlet morphology and plastid genome [J]. Plant Diversity, 2023, 45(04): 409-421. |
[4] | Yu-Feng Gu, Jiang-Ping Shu, Yi-Jun Lu, Hui Shen, Wen Shao, Yan Zhou, Qi-Meng Sun, Jian-Bing Chen, Bao-Dong Liu, Yue-Hong Yan. Insights into cryptic speciation of quillworts in China [J]. Plant Diversity, 2023, 45(03): 284-301. |
[5] | Yu-Wen Zhang, Yu-Cen Shi, Shi-Bao Zhang. Metabolic and transcriptomic analyses elucidate a novel insight into the network for biosynthesis of carbohydrate and secondary metabolites in the stems of a medicinal orchid Dendrobium nobile [J]. Plant Diversity, 2023, 45(03): 326-336. |
[6] | Shi-Yu Lv, Xia-Ying Ye, Zhong-Hu Li, Peng-Fei Ma, De-Zhu Li. Testing complete plastomes and nuclear ribosomal DNA sequences for species identification in a taxonomically difficult bamboo genus Fargesia [J]. Plant Diversity, 2023, 45(02): 147-155. |
[7] | Romina Vidal-Russell, Mariana Tadey, Romana Urfusová, Tomáš Urfus, Cintia Paola Souto. Evolutionary importance of the relationship between cytogeography and climate: New insights on creosote bushes from North and South America [J]. Plant Diversity, 2022, 44(05): 492-498. |
[8] | Shiming Deng, Qiang Xiao, Cigui Xu, Jian Hong, Zhijun Deng, Dan Jiang, Shijia Luo. Metabolome profiling of stratified seeds provides insight into the regulation of dormancy in Davidia involucrata [J]. Plant Diversity, 2022, 44(04): 417-427. |
[9] | Zeng-Qiang Xia, Zuo-Ying Wei, Hui Shen, Jiang-Ping Shu, Ting Wang, Yu-Feng Gu, Amit Jaisi, Yue-Hong Yan. Lycophyte transcriptomes reveal two whole-genome duplications in Lycopodiaceae: Insights into the polyploidization of Phlegmariurus [J]. Plant Diversity, 2022, 44(03): 262-270. |
[10] | Fa-Guo Wang, Ai-Hua Wang, Cheng-Ke Bai, Dong-Mei Jin, Li-Yun Nie, AJ Harris, Le Che, Juan-Juan Wang, Shi-Yu Li, Lei Xu, Hui Shen, Yu-Feng Gu, Hui Shang, Lei Duan, Xian-Chun Zhang, Hong-Feng Chen, Yue-Hong Yan. Genome size evolution of the extant lycophytes and ferns [J]. Plant Diversity, 2022, 44(02): 141-152. |
[11] | Ying-Min Zhang, Li-Jun Han, Cong-Wei Yang, Zi-Li Yin, Xing Tian, Zi-Gang Qian, Guo-Dong Li. Comparative chloroplast genome analysis of medicinally important Veratrum (Melanthiaceae) in China: Insights into genomic characterization and phylogenetic relationships [J]. Plant Diversity, 2022, 44(01): 70-82. |
[12] | Ge Bai, Da-Hai Yang, Peijian Chao, Heng Yao, MingLiang Fei, Yihan Zhang, Xuejun Chen, Bingguang Xiao, Feng Li, Zhen-Yu Wang, Jun Yang, He Xie. Genome-wide identification and expression analysis of NtbHLH gene family in tobacco (Nicotiana tabacum) and the role of NtbHLH86 in drought adaptation [J]. Plant Diversity, 2021, 43(06): 510-522. |
[13] | Hanqing Tang, Lu Tang, Shicheng Shao, Yulan Peng, Lu Li, Yan Luo. Chloroplast genomic diversity in Bulbophyllum section Macrocaulia (Orchidaceae, Epidendroideae, Malaxideae): Insights into species divergence and adaptive evolution [J]. Plant Diversity, 2021, 43(05): 350-361. |
[14] | Gang Yao, Bine Xue, Kun Liu, Yuling Li, Jiuxiang Huang, Junwen Zhai. Phylogenetic estimation and morphological evolution of Alsineae (Caryophyllaceae) shed new insight into the taxonomic status of the genus Pseudocerastium [J]. Plant Diversity, 2021, 43(04): 299-307. |
[15] | Yu-Long Yu, Hui-Chun Wang, Zhi-Xiang Yu, Johann Schinnerl, Rong Tang, Yu-Peng Geng, Gao Chen. Genetic diversity and structure of the endemic and endangered species Aristolochia delavayi growing along the Jinsha River [J]. Plant Diversity, 2021, 43(03): 225-233. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||