Plant Diversity ›› 2024, Vol. 46 ›› Issue (05): 611-620.DOI: 10.1016/j.pld.2024.04.006
• Articles • Previous Articles
Eduardo Vinícius da Silva Oliveiraa,b, Myrna Friederichs Landimc, Sidney F. Gouveiab,d
Received:
2023-09-19
Revised:
2024-04-08
Published:
2024-09-07
Contact:
Eduardo Vinícius da Silva Oliveira,E-mail:eduardovso@yahoo.com.br
Supported by:
Eduardo Vinícius da Silva Oliveira, Myrna Friederichs Landim, Sidney F. Gouveia. Assembly structures of coastal woody species of eastern South America: Patterns and drivers[J]. Plant Diversity, 2024, 46(05): 611-620.
Add to citation manager EndNote|Ris|BibTeX
Aguirre-Gutierrez, J., Malhi, Y., Lewis, S. L., et al., 2020. Long-term droughts may drive drier tropical forests towards increased functional, taxonomic and phylogenetic homogeneity. Nat. Commun. 11, 1-10. https://doi.org/10.1038/s41467-020-16973-4. Amorim, M.W., Melo-Jr, J.C.F., 2017. Functional diversity of Restinga shrub species on the coastal plain of Southern Brazil. Int. J. Dev. Res. 7, 13189-13202. Baez, S., Fadrique, B., Feeley, K., et al., 2022. Changes in tree functional composition across topographic gradients and through time in a tropical montane forest. PLoS One 17. https://doi.org/10.1371/journal.pone.0263508. Belyea, L.R., Lancaster, J., 1999. Assembly rules within a contingent ecology. Oikos 86, 402-416. https://doi.org/10.2307/3546646. BFG - The Brazil Flora Group, 2018. Brazilian flora 2020: innovation and collaboration to meet target 1 of the global strategy for plant conservation (GSPC). Rodriguesia 69, 1513-1527. https://doi.org/10.1590/2175-7860201869402. Bivand, R., Altman, M., Anselin, L., et al., 2023. Spatial dependence: weighting schemes, Statistics. https://cran.r-project.org/web/packages/spdep/index.html (accessed 6 September 2023). Bose, R., Ramesh, B., Pelissier, R., et al., 2018. Phylogenetic diversity in the Western Ghats biodiversity hotspot reflects environmental filtering and past niche diversification of trees. J. Biogeogr. 46, 145-157. https://doi.org/10.1111/jbi.13464. Brunbjerg, A.K., Ejrnaes, R., Svenning, J.-C., 2012. Species sorting dominates plant metacommunity structure in coastal dunes. Acta Oecol. 39, 33-42. https://doi.org/10.1016/j.actao.2011.11.002. Burnham, K.P., Anderson, D.R., 2004. Model Selection and Multimodel Inference, Springer-Verlag, New York. Cadotte, M., Albert, C.H., Walker, S.C., 2013. The ecology of differences: assessing community assembly with trait and evolutionary distances. Ecol. Lett. 16, 1234-1244. https://doi.org/10.1111/ele.12161. Carvalho, G., 2020. Tools for interacting with the Brazilian flora 2020. http://www.github.com/gustavobio/flora (accessed 11 May 2020). Cavender-Bares, J., Ackerly, D., Baum, D., et al., 2004. Phylogenetic overdispersion in Floridian oak communities. Am. Nat. 163, 823-843. https://doi.org/10.1086/386375. Cavender-Bares, J., Kozak, K.H., Fine, P.V.A., et al., 2009. The merging of community ecology and phylogenetic biology. Ecol. Lett. 12, 693-715. https://doi.org/10.1111/j.1461-0248.2009.01314.x. Clements, F. E., 1905. Research Methods in Ecology, University of Nebraska Press, Lincoln. Cornelissen, J.H.C., Lavorel, S., Garnier, E., et al., 2003. A handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335-380. https://doi.org/10.1071/BT02124. Cornwell, W.K., Ackerly, D.D., 2009. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol. Monogr. 79, 109-126. https://doi.org/10.1890/07-1134.1. Coyle, J.R., Halliday, F.W., Lopez, B.E., et al., 2014. Using trait and phylogenetic diversity to evaluate the generality of the stress-dominance hypothesis in eastern North American tree communities. Ecography 37, 814-826. https://doi.org/10.1111/ecog.00473. Cramer, M.J., Willig, M.R., 2005. Habitat heterogeneity, species diversity and null models. Oikos 108, 209-218. https://doi.org/10.1111/j.0030-1299.2005.12944.x. DaSilva, M.B., Pinto-da-Rocha, R., 2011. Historia biogeografica da Mata Atlantica: opilioes (Arachnida) como modelo para sua inferencia. In: Carvalho, C.J.B., Almeida, E.A.B. (Orgs). Biogeografia da America do Sul - Padroes e Processos. Roca, Sao Paulo, pp. 221-238. Davies, T.J., 2021. Ecophylogenetics redux. Ecol. Lett. 24, 1073-1088. https://doi.org/10.1111/ele.13682. Diamond, J.M., 1975. Assembly of species communities. In: Cody, M.L., Diamond, J.L. (Eds.). Ecology and Evolution of Communities. Harvard University Press, Cambridge, pp. 342-444. Diaz, S., Kattge, J., Cornelissen, J. H., et al., 2022. The global spectrum of plant form and function: enhanced species-level trait dataset. Sci. Data 9, 1-18. https://doi.org/10.1038/s41597-022-01774-9. Ding, Y., Zang, R., Letcher, S. G., et al., 2012. Disturbance regime changes the trait distribution, phylogenetic structure and community assembly of tropical rain forests. Oikos 121, 1263-1270. https://doi.org/10.1111/j.1600-0706.2011.19992.x. Emerson, B.C., Gillespie, R.G., 2008. Phylogenetic analysis of community assembly and structure over space and time. Trends Ecol. Evol. 23, 619-630. https://doi.org/10.1016/j.tree.2008.07.005. Enquist, B.J., Condit, R., Peet, R.K., et al., 2016. Cyber infrastructure for an integrated botanical information network to investigate the ecological impacts of global climate change on plant biodiversity. PeerJ Prepr. 4, e2615v2. https://doi.org/10.7287/peerj.preprints.2615v2. Feng, G., Ma, Z., Benito, B., et al., 2017. Phylogenetic age differences in tree assemblages across the Northern Hemisphere increase with long-term climate stability in unstable regions. Glob. Ecol. Biogeogr. 26, 1035-1042. https://doi.org/10.1111/GEB.12613. Fernandes, M.F., Queiroz, L.P., 2015. Floristic surveys of Restinga forests in southern Bahia, Brazil, reveal the effects of geography on community composition. Rodriguesia 66, 51-73. https://doi.org/10.1590/2175-7860201566104. Fick, S.E., Hijmans, R.J., 2017. Worldclim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302-4315. https://doi.org/10.1002/joc.5086. Fine, P.V., 2015. Ecological and evolutionary drivers of geographic variation in species diversity. Annu. Rev. Ecol. 46, 369-392. https://doi.org/10.1146/annurev-ecolsys-112414-054102. Fischer, G., Nachtergaele, F., Prieler, S., et al., 2008. Global agro-ecological zones assessment for agriculture. http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/ (accessed November 21 2018). Fletcher, T.D., 2022. Quantitative Psychology Tools. https://cran.r-project.org/web/packages/QuantPsyc/index.html (accessed 11 August 2020). Fritz, S.A., Purvis, A., 2010. Selectivity in mammalian extinction risk and threat types: a new measure of phylogenetic signal strength in binary traits. Conserv. Biol. 24, 1042-1051. https://doi.org/10.1111/j.1523-1739.2010.01455.x. Gastauer, M., Meira-Neto, J.A.A., 2017. Updated angiosperm family tree for analyzing phylogenetic diversity and community structure. Acta Bot. Bras. 31, 191-198. https://doi.org/10.1590/0102-33062016abb0306. Gerhold, P., Cahill Jr, J.F., Winter, M., et al., 2015. Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Funct. Ecol. 29, 600-614. https://doi.org/10.1111/1365-2435.12425. Gleason, H.A., 1939. The individualistic concept of the plant association. Am. Midl. Nat. 21, 92-110. https://doi.org/10.2307/2479933. Gong, Y., Ling, H., Lv, G., et al., 2019. Disentangling the influence of aridity and salinity on community functional and phylogenetic diversity in local dryland vegetation. Sci. Total Environ. 653, 409-422. https://doi.org/10.1016/j.scitotenv.2018.10.358. Gotelli, N., Entsminger, G., 2003. Swap algorithms in null model analysis. Ecology 84, 532-535. https://doi.org/10.1890/0012-9658(2003)084[0532:SAINMA]2.0.CO;2. Gotzenberger, L., de Bello, F., Brathen, K.A., et al., 2012. Ecological assembly rules in plant communities-approaches, patterns and prospects. Biol. Rev. 87, 111-127. https://doi.org/10.1111/j.1469-185X.2011.00187.x. Gower, J.C., 1971. A general coefficient of similarity and some of its properties. Biometrics 27, 857-874. https://doi.org/10.2307/2528823. Grossiord, C., Buckley, T.N., Cernusak, L.A., et al., 2020. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550-1566. https://doi.org/10.1111/nph.16485. Hardy, O.J., 2008. Testing the spatial phylogenetic structure of local communities: statistical performances of different null models and test statistics on a locally neutral community. J. Ecol. 96, 914-926. https://doi.org/10.1111/j.1365-2745.2008.01421.x. Hardy, O. J., Senterre, B., 2007. Characterizing the phylogenetic structure of communities by an additive partitioning of phylogenetic diversity. J. Ecol. 95, 493-506. https://doi.org/10.1111/j.1365-2745.2007.01222.x. Heck, K., Coltman, E., Schneider, J., et al., 2020. Influence of radiation on evaporation rates: a numerical analysis. Water Resour. Res. 56, 1-18. https://doi.org/10.1029/2020WR027332. Hijmans, R.J., Cameron, S.E., Parra, J.L., et al., 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965-1978. https://doi.org/10.1002/joc.1276. Hijmans, R.J., Etten, J.V., Sumner, M., et al., 2019. Geographic Data Analysis and Modeling. https://cran.r-project.org/web/packages/raster/index.html (accessed 6 May 2020). Hijmans, R.J., Karney, C., Williams, E., et al., 2023a. Spherical Trigonometry. https://cran.r-project.org/web/packages/geosphere/index.html (accessed 16 July 2023). Hijmans, R.J., Phillips, S.; Leathwick, J.; et al., 2023b. Species Distribution Modeling. https://cran.r-project.org/web/packages/dismo/index.html (accessed 16 July 2023). HilleRisLambers, J., Adler, P.B., Harpole, W.S., et al., 2012. Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst. 43, 227-248. https://doi.org/10.1146/annurev-ecolsys-110411-160411. ISRIC, 2020. SoilGrids250m version 2.0. https://soilgrids.org/ (accessed 23 November 2023). Jimenez-Alfaro, B., Marceno, C., Guarino, R., et al., 2015. Regional metacommunities in two coastal systems: spatial structure and drivers of plant assemblages. J. Biogeogr. 42, 452-462. https://doi.org/10.1111/jbi.12437. Jin, Y., Qian, H., 2022. V.PhyloMaker2: an updated and enlarged R package that can generate very large phylogenies for vascular plants. Plant Divers. 44, 335-339. https://doi.org/10.1016/j.pld.2022.05.005. Jin, Y., Qian, H., 2023. U.PhyloMaker: an R package that can generate large phylogenetic trees for plants and animals. Plant Divers. 45, 347-352. https://doi.org/10.1016/j.pld.2022.12.007. Johnson, J.B., Omland, K.S., 2004. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101-108. https://doi.org/10.1016/j.tree.2003.10.013. Kattge, J., Boenisch, G., Diaz, S., et al., 2020. TRY plant trait database - enhanced coverage and open access. Glob. Change Biol. 26, 119-188. https://doi.org/10.1111/gcb.14904. Kembel, S.W., 2009. Disentangling niche and neutral influences on community assembly: assessing the performance of community phylogenetic structure tests. Ecol. Lett. 12, 949-960. https://doi.org/10.1111/j.1461-0248.2009.01354.x. Kembel, S.W., Ackerly, D.D., Blomberg, S.P., et al., 2010. Integrating phylogenies and ecology. https://cran.r-project.org/web/packages/picante/index.html (accessed 21 May 2019). Kjerfve, B., Lacerda, L.D., 1993. Mangroves of Brazil. In: Lacerda, L.D., Diop, S. (Eds). Conservation and Sustainable Utilization of Mangroves in Latin America and Africa Regions. International Society for Mangrove Ecosystems, Okinawa, pp. 245-272. Kraft, N.J., Cornwell, W.K., Webb, C.O., et al., 2007. Trait evolution, community assembly, and the phylogenetic structure of ecological communities. Am. Nat. 170, 271-283. https://doi.org/10.1086/519400. Kubota, Y., Kusumoto, B., Shiono, T., et al., 2018. Environmental filters shaping angiosperm tree assembly along climatic and geographic gradients. J. Veg. Sci. 29, 607-618. https://doi.org/10.1111/jvs.12648. Laliberte, E., Legendre, P., Shipley, B., 2015. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. https://cran.r-project.org/web/packages/FD/index.html (accessed 16 July 2019). Lavorel, S., Garnier, E., 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16, 545-556. https://doi.org/10.1046/j.1365-2435.2002.00664.x. Legendre, P., Legendre, L. 2012. Numerical Ecology. Elsevier, Amsterdam. Lenz, M., Schulz, A., Koeck, T., et al., 2020. Missing value imputation in proximity extension assay-based targeted proteomics data. PLoS One 15, 1-19. https://doi.org/10.1371/journal.pone.0243487.eCollection 2020. Li, H., Zhao, C., Shao, F., et al., 2015a. A hybrid imputation approach for microarray missing value estimation. BMC Genom. 16, 1-11. https://doi.org/10.1186/1471-2164-16-S9-S1. Li, S.P., Cadotte, M.W., Meiners, S. J., et al., 2015b. Species colonization, not competitive exclusion, drives community overdispersion over long-term succession. Ecol. Lett. 18, 964-973. https://doi.org/10.1111/ele.12476. Littell, J.S., Gwozdz, R.B., 2011. Climatic water balance and regional fire years in the Pacific Northwest, USA: linking regional climate and fire at landscape scales. In: McKenzie, D., Miller, C., Falk, D. (Eds.). The Landscape Ecology of Fire. Ecological Studies (Analysis and Synthesis). Springer, Dordrecht, pp. 117-139. Liu, B., Chen, H.Y., Yang, J., 2018. Understory community assembly following wildfire in boreal forests: shift from stochasticity to competitive exclusion and environmental filtering. Front. Plant Sci. 9, 1-12. https://doi.org/10.3389/fpls.2018.01854. Liu, J., Tan, Y.H., Slik, J., 2014. Topography related habitat associations of tree species traits, composition and diversity in a Chinese tropical forest. For. Ecol. Manag. 330, 75-81. https://doi.org/10.1016/J.FORECO.2014.06.045. Lobo, J.M., Hortal, J., Yela, J.L., et al., 2018. KnowBR: an application to map the geographical variation of survey effort and identify well-surveyed areas from biodiversity databases. Ecol. Indic. 91, 241-248. https://doi.org/10.1016/j.ecolind.2018.03.077. Lourenco, J., Newman, E.A., Ventura, J.A., et al., 2021. Soil-associated drivers of plant traits and functional composition in Atlantic Forest coastal tree communities. Ecosphere 12, 1-21. https://doi.org/10.1002/ecs2.3629. Ma, Z., Sandel, B., Svenning, J.C., 2016. Phylogenetic assemblage structure of North American trees is more strongly shaped by glacial-interglacial climate variability in gymnosperms than in angiosperms. Ecol. Evol. 6, 3092-3106. https://doi.org/10.1002/ece3.2100. MacArthur, R., Levins, R., 1967. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101, 377-385. Maitner, B.S., Boyle, B., Casler, N., et al., 2017. The BIEN r package: a tool to access the Botanical Information and Ecology Network (BIEN) database. Methods Ecol. Evol. 9, 1-7. https://doi.org/10.1111/2041-210X.12861. Martiny, A.C., Treseder, K., Pusch, G., 2013. Phylogenetic conservatism of functional traits in microorganisms. ISME J. 7, 830-838. https://doi.org/10.1038/ismej.2012.160. Massante, J.C., Gastauer, M., 2023. Evolutionary history of marginal habitats regulates the diversity of tree communities in the Atlantic Forest. Ann. Bot. 131, 261-274. https://doi.org/10.1093/aob/mcac111. Massante, J.C., Gerhold, P., 2020. Environment and evolutionary history depict phylogenetic alpha and beta diversity in the Atlantic coastal white-sand woodlands. J. Veg. Sci. 31, 634-645. https://doi.org/10.1111/jvs.12900. Massmann, A., Gentine, P., Lin, C, 2019. When does vapor pressure deficit drive or reduce evapotranspiration? J. Adv. Model. Earth Syst. 11, 3305-3320. https://doi.org/10.1029/2019MS001790. Mastrogianni, A., Kiziridis, D.A., Chytry, M., et al., 2023. Decoupled functional and phylogenetic diversity provide complementary information about community assembly mechanisms: a case study of Greek forests. Acta Oecol. 120. https://doi.org/10.1016/j.actao.2023.103933. Mayfield, M.M., Levine, J.M., 2010. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol. Lett. 13, 1085-1093. https://doi.org/10.1111/j.1461-0248.2010.01509.x. Melo-Jr, J.C.F., Boeger, M.R.T., 2017. Functional traits of dominant plant species of the Brazilian sandy coastal plain. Int. J. Curr. Res. 9, 45585-45593. Miller, E.T., Farine, D.R., Trisos, C.H., 2017. Phylogenetic community structure metrics and null models: a review with new methods and software. Ecography 40, 461-477. https://doi.org/10.1111/ecog.02070. Mittelbach, G.G., McGill, B.J., 2019. Community Ecology. Oxford University Press, Oxford. Moeslund, J.E., Arge, L., Boecher, P.K., et al., 2013. Topography as a driver of local terrestrial vascular plant diversity patterns. Nord. J. Bot. 31, 129-144. https://doi.org/10.1111/j.1756-1051.2013.00082.x. Nascimento, E.R., Correia, I., Ruiz-Esparza, J.M., et al., 2018. Disentangling phylogenetic from non-phylogenetic functional structure of bird assemblages in a tropical dry forest. Oikos 127, 1177-1185. https://doi.org/10.1111/oik.04910. Oksanen, J., Blanchet, F.G., Friendly, M., et al., 2018. Vegan: community ecology package. https://CRAN.R-project.org/package=vegan (accessed 21 June 2019). Oliveira, E.V.S., Alves, D.M.C., Landim, M.F., et al., 2021. Sampling effort and the drivers of plant species richness in the Brazilian coastal regions. Oecologia 195, 163-171. https://doi.org/10.1007/s00442-020-04805-7. Ordonez, A., Svenning, J., 2018. Greater tree species richness in eastern North America compared to Europe is coupled to denser, more clustered functional trait space filling, not to trait space expansion. Glob. Ecol. Biogeogr. 27, 1288-1299. https://doi.org/10.1111/geb.12785. Orme, D., Freckleton, R., Thomas, G., et al., 2023. Comparative analyses of phylogenetics and evolution in R. https://cran.r-project.org/web/packages/caper/index.html (accessed 22 February 2024). Pagel, M., 1999. Inferring the historical patterns of biological evolution. Nature 401, 877-884. https://doi.org/10.1038/44766. Pantanowitz, A., Marwala, T., 2009. Missing data imputation through the use of the random forest algorithm. Adv. Intell. Syst. Comput. 116, 53-62. https://doi.org/10.1007/978-3-642-03156-4_6. Paradis, E., Claude, J., Strimmer, K., 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289-290. https://doi.org/10.1093/bioinformatics/btg412. Pausas, J.G., Verdu, M., 2010. The jungle of methods for evaluating phenotypic and phylogenetic structure of communities. BioScience 60, 614-625. https://doi.org/10.1525/bio.2010.60.8.7. Pavoine, S., Bonsall, M.B., 2011. Measuring biodiversity to explain community assembly: a unified approach. Biol. Rev. 86, 792-812. https://doi.org/10.1111/j.1469-185X.2010.00171.x. Pavoine, S., Vela, E., Gachet, S., et al., 2011. Linking patterns in phylogeny, traits, abiotic variables and space: a novel approach to linking environmental filtering and plant community assembly. J. Ecol. 99, 165-175. https://doi.org/10.1111/j.1365-2745.2010.01743.x. Penone, C., Davidson, A.D., Shoemaker, K.T., et al., 2014. Imputation of missing data in life-history trait datasets: which approach performs the best? Methods Ecol. Evol. 5, 961-970. https://doi.org/10.1111/2041-210X.12232. Petchey, O.L., Gaston, K.J., 2006. Functional diversity: back to basics and looking forward. Ecol. Lett. 9, 741-758. https://doi.org/10.1111/j.1461-0248.2006.00924.x. Pigot, A.L., Etienne, R.S., 2015. A new dynamic null model for phylogenetic community structure. Ecol. Lett. 18, 153-163. https://doi.org/10.1111/ele.12395. QGIS Development Team, 2020. QGIS geographic information system. http://qgis.osgeo.org (accessed 8 August 2020). Qian, H., Deng, T., Jin, Y., et al., 2019. Phylogenetic dispersion and diversity in regional assemblages of seed plants in China. Proc. Natl. Acad. Sci. U.S.A. 116, 23192-23201. https://doi.org/10.1073/pnas.1822153116. Qian, H., Field, R., Zhang, J.L., et al., 2016. Phylogenetic structure and ecological and evolutionary determinants of species richness for angiosperm trees in forest communities in China. J. Biogeogr. 43, 603-615. https://doi.org/10.1111/jbi.12639. Qian, H., Sandel, B., 2017. Phylogenetic structure of regional angiosperm assemblages across latitudinal and climatic gradients in North America. Glob. Ecol. Biogeogr. 26, 1258-1269. https://doi.org/10.1111/geb.12634. R Development Core Team, 2018. R: a language and environment for statistical computing. http://www.R-project.orgS (accessed 6 September 2018). Ratkowski, D.A., 1990. Handbook of Nonlinear Regression Models. Marcel Dekker, New York. Revell, L.J., 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 2, 217-223. https://doi.org/10.1111/j.2041-210X.2011.00169.x. Ripley, B., Venables, B., Bates, D.M., et al., 2023. Support functions and datasets for Venables and Ripley's MASS. https://cran.r-project.org/web/packages/MASS/index.html (accessed 6 September 2023). Rizzini, A.T., 1997. Tratado de fitogeografia do Brasil: aspectos ecologicos, sociologicos e floristicos. Ambito Cultural, Rio de Janeiro. Satdichanh, M., Millet, J., Heinimann, A., et al., 2015. Using plant functional traits and phylogenies to understand patterns of plant community assembly in a seasonal tropical forest in Lao PDR. PLoS One 10, e0130151. https://doi.org/10.1371/journal.pone.0130151. Scarano, F.R., 2002. Structure, function and floristic relationships of plant communities in stressful habitats marginal to the Brazilian Atlantic Rainforest. Ann. Bot. 90, 517-524. https://doi.org/10.1093/aob/mcf189. Silva, K.J.P., Souza, A.F., 2018. Common species distribution and environmental determinants in South American coastal plains. Ecosphere 9, 1-15. https://doi.org/10.1002/ecs2.2224. Smith, S.A., Brown, J.H., 2018. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302-314. https://doi.org/10.1002/ajb2.1019. Sobral, F.L. Cianciaruso, M.V., 2016. Functional and phylogenetic structure of forest and savanna bird assemblages across spatial scales. Ecography 39, 533-541. https://doi.org/10.1111/ecog.00903. Sousa-Baena, M.S., Garcia, L.C., Peterson, A.T., 2014. Completeness of digital accessible knowledge of the plants of Brazil and priorities for survey and inventory. Divers. Distrib. 20, 369-381. https://doi.org/10.1111/ddi.12136. Sperandii, M.G., Bazzichetto, M., Acosta, A.T.R., et al., 2019. Multiple drivers of plant diversity in coastal dunes: a Mediterranean experience. Sci. Total Environ. 652, 1435-1444. https://doi.org/10.1016/j.scitotenv.2018.10.299. Stekhoven, D.J., Buhlmann, P., 2012. Missforest - non-parametric missing value imputation for mixed-type data. Bioinformatics 28, 112-118. https://doi.org/10.1093/bioinformatics/btr597. Stropp, J., Ladle, R.J., Malhado, A.C.M., et al., 2016. Mapping ignorance: 300 years of collecting flowering plants in Africa. Glob. Ecol. Biogeogr. 25, 1-12. https://doi.org/10.1111/geb.12468. Swenson, N. G., 2014. Functional and Phylogenetic Ecology in R. New York: Springer. Swenson, N.G., Enquist, B.J., 2009. Opposing assembly mechanisms in a Neotropical dry forest: implications for phylogenetic and functional community ecology. Ecology 90, 2161-2170. https://doi.org/10.1890/08-1025.1. Swenson, N.G., Erickson, D.L., Mi, X., et al., 2012, Phylogenetic and functional alpha and beta diversity in temperate and tropical tree communities. Ecology 93, S112-S125. https://doi.org/10.1890/11-0402.1. Trabucco, A., Zomer, R.J., 2019. Global high-resolution soil-water balance: CGIAR consortium for spatial information. http://www.cgiar-csi.org (accessed 11 October 2019). U.S. Geological Survey’s, 2019. GTOPO30 - global digital elevation model (DEM). https://earthexplorer.usgs.gov/ (accessed 25 March 2022). Vamosi, S.M., Heard, S.B., Vamosi, J.C., et al., 2009. Emerging patterns in the comparative analysis of phylogenetic community structure. Mol. Ecol. 18, 572-592. https://doi.org/10.1111/j.1365-294X.2008.04001.x. Venter, O., Sanderson, E.W., Magrach, A., et al., 2016. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558. https://doi.org/10.1038/ncomms12558. Villwock, J.E., Lessa, G.C., Suguio, K., et al., 2005. Geologia e geomorfologia de regioes costeiras. In: Souza, C.R.G., Suguio, K., Oliveira, A.M.S., Oliveira, P.E. (Orgs.). Quaternario do Brasil. Editora Holos, Ribeirao Preto, pp. 94-107. Vitoria, A.P., Alves, L.F., Santiago, L.S., 2019. Atlantic forest and leaf traits: an overview. Trees (Berl.) 33, 1535-1547. https://doi.org/10.1007/s00468-019-01864-z. Webb, C.O., 2000. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am. Nat. 156, 145-155. https://doi.org/10.1086/303378. Webb, C.O., Ackerly, D.D., McPeek, M.A., et al., 2002. Phylogenies and community ecology. Ann. Rev. Ecol. Syst. 33. 475-505. https://doi.org/10.1146/annurev.ecolsys.33.010802.150448. Weiher, E., Keddy, P.A., 1995. Assembly rules, null models, and trait dispersion - new questions front old patterns. Oikos 74, 159-164. https://doi.org/10.2307/3545686. Wiens, J., Graham, C., 2005. Niche conservatism: integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Syst. 36, 519-539. https://doi.org/10.1146/annurev.ecolsys.36.102803.095431. Xu, J., Dang, H., Wang, M., et al., 2019. Is phylogeny more useful than functional traits for assessing diversity patterns under community assembly processes?. Forests 10, 1159. https://doi.org/10.3390/f10121159. Yang, J., Zhang, G., Ci, X., et al., 2014. Functional and phylogenetic assembly in a Chinese tropical tree community across size classes, spatial scales and habitats. Funct. Ecol. 28, 520-529. https://doi.org/10.1111/1365-2435.12176. Zanne, A.E., Tank, D.C., Cornwell, W.K., et al., 2014. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89-92. https://doi.org/10.1038/nature12872. Zhao, F., Yang, T., Luo, C., et al., 2022. Comparing elevational patterns of taxonomic, phylogenetic, and functional diversity of woody plants reveal the asymmetry of community assembly mechanisms on a mountain in the Hengduan Mountains Region. Front. Ecol. Evol. 10, 869258. https://doi.org/10.3389/fevo.2022.869258. Zhou, W., Zhang, Y., Zhang, S., et al., 2021. Phylogenetic and functional traits verify the combined effect of deterministic and stochastic processes in the community assembly of temperate forests along an elevational gradient. Forests 12, 591. https://doi.org/10.3390/f12050591. |
[1] | Hong-Hu Meng, Can-Yu Zhang, Shook Ling Low, Lang Li, Jian-Yong Shen, Nurainas, Yu Zhang, Pei-Han Huang, Shi-Shun Zhou, Yun-Hong Tan, Jie Li. Two new species from Sulawesi and Borneo facilitate phylogeny and taxonomic revision of Engelhardia (Juglandaceae) [J]. Plant Diversity, 2022, 44(06): 552-564. |
[2] | LI Miao-Miao, MEEGAHAKUMBURA M. Kasun, YAN Li-Jun, LIU Jie, GAO Lian-Ming. Genetic Involvement of Camellia taliensis in the Domestication of C.sinensis var. assamica (Assimica Tea) Revealed by Nuclear Microsatellite Markers [J]. Plant Diversity, 2015, 37(01): 29-37. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||