Plant Diversity ›› 2024, Vol. 46 ›› Issue (06): 713-722.DOI: 10.1016/j.pld.2024.06.003
• Articles • Previous Articles
Han-Ning Duana,b, Yin-Zi Jiangc, Jun-Bo Yangd, Jie Caid, Jian-Li Zhaoe, Lu Lib, Xiang-Qin Yua
Received:
2023-12-17
Revised:
2024-06-14
Published:
2024-12-26
Contact:
Lu Li,E-mail:lilu@swfu.edu.cn;Xiang-Qin Yu,E-mail:yuxiangqin@mail.kib.ac.cn
Supported by:
Han-Ning Duan, Yin-Zi Jiang, Jun-Bo Yang, Jie Cai, Jian-Li Zhao, Lu Li, Xiang-Qin Yu. Skmer approach improves species discrimination in taxonomically problematic genus Schima (Theaceae)[J]. Plant Diversity, 2024, 46(06): 713-722.
Add to citation manager EndNote|Ris|BibTeX
Alvarez, I., Costa, A., Feliner, G.N., 2008. Selecting single-copy nuclear genes for plant phylogenetics: a preliminary analysis for the Senecioneae (Asteraceae). J. Mol. Evol. 66, 276-291. https://doi.org/10.1007/s00239-008-9083-7. Antil, S., Abraham, J.S., Sripoorna, S., et al., 2023. DNA barcoding, an effective tool for species identification: a review. Mol. Biol. Rep. 50, 761-775. https://doi.org/10.1007/s11033-022-08015-7. Balaban, M., Sarmashghi, S., Mirarab, S., et al., 2020. APPLES: scalable distance-based phylogenetic placement with or without alignments. Syst. Biol. 69, 566-578. https://doi.org/10.1093/sysbio/syz063. Bezbaruah, H.P., 1971. Cytological investigations in the family Theaceae-I. chromosome numbers in some Camellia species and allied genera. Caryologia 24, 421-426. https://doi.org/10.1080/00087114.1971.10796449. Bieniek, W., Mizianty, M., Szklarczyk, M., 2014. Sequence variation at the three chloroplast loci (matK, rbcL, trnH-psbA) in the Triticeae tribe (Poaceae): comments on the relationships and utility in DNA barcoding of selected species. Plant Syst. Evol. 301, 1275-1286. https://doi.org/10.1007/s00606-014-1138-1. Bloembergen, S., 1952. A critical study in the complex-polymorphous genus Schima (Theaceae). REINWARDTIA 2, 113-183. https://doi.org/10.55981/reinwardtia.1952.1019. Bohmann, K., Mirarab, S., Bafna, V., et al., 2020. Beyond DNA barcoding: the unrealized potential of genome skim data in sample identification. Mol. Ecol. 29, 2521-2534. https://doi.org/10.1111/mec.15507. Bushnell, B., 2014. BBTools software package. Available online: https://sourceforge.net/projects/bbmap/. (accessed on 1 September 2023). Chang, H.D., Ren, S. X, 1998. Theaceae. In: C.Y. Wu (Ed.), Flora Reipublicae Popularis Sinicae. Science Press. Chen, S., Zhou, Y., Chen, Y., et al., 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884-i890. https://doi.org/10.1093/bioinformatics/bty560. Cleusa, V., Bianca, O., Joao, R.I., et al., 2018. Integrative taxonomy improves delimitation in Hypericum subspecies. Perspect. Plant Ecol. Evol. Syst. 34, 68-76. https://doi.org/10.1016/j.ppees.2018.08.005. College, J.N.M, 1985. Traditional Chinese Medicine (1st Volume). Shanghai Scientific & Technical Publishers, Shanghai, China. Dayrat, B., 2005. Towards integrative taxonomy. Biol. J. Linn. Soc. 85, 407-415. https://doi.org/10.1111/j.1095-8312.2005.00503.x. David, M. H., James, J. B., 1993. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst. Biol. 42, 182-192. https://doi.org/10.1093/sysbio/42.2.182. Dodsworth, S., 2015. Genome skimming for next-generation biodiversity analysis. Trends Plant Sci. 20, 525-527. https://doi.org/10.1016/j.tplants.2015.06.012. Dong, P.B., Wang, R.N., Afzal, N., et al., 2021. Phylogenetic relationships and molecular evolution of woody forest tree family Aceraceae based on plastid phylogenomics and nuclear gene variations. Genomics 113, 2365-2376. https://doi.org/10.1016/j.ygeno.2021.03.037. Fu, C.N., Mo, Z.Q., Yang, J.B., et al., 2022. Testing genome skimming for species discrimination in the large and taxonomically difficult genus Rhododendron. Mol. Ecol. Resour. 22, 404-414. https://doi.org/10.1111/1755-0998.13479. Fu, C.N., Wu, C.S., Ye, L.J., et al., 2019. Prevalence of isomeric plastomes and effectiveness of plastome super-barcodes in yews (Taxus) worldwide. Sci. Rep. 9, 2773. https://doi.org/10.1038/s41598-019-39161-x. Greiner, S., Sobanski, J., Bock, R., 2015. Why are most organelle genomes transmitted maternally? Bioessays 37, 80-94. https://doi.org/10.1002/bies.201400110. He, X., Cao, J.J., Zhang, W., et al., 2022. Integrative taxonomy of herbaceous plants with narrow fragmented distributions: a case study on Primula merrilliana species complex. J. Syst. Evol. 60, 859-875. https://doi.org/10.1111/jse.12726. Hollingsworth, P.M., Li, D.Z., van der Bank, M., et al., 2016. Telling plant species apart with DNA: from barcodes to genomes. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150338. https://doi.org/10.1098/rstb.2015.0338. Hughest, C.E., Eastwood, R.J., Bailey, C.D., 2006. From famine to feast? Selecting nuclear DNA sequence loci for plant species-level phylogeny reconstruction. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361, 211-225. https://doi.org/10.1098/rstb.2005.1735. Ji, Y., Liu, C., Yang, Z., et al., 2019. Testing and using complete plastomes and ribosomal DNA sequences as the next generation DNA barcodes in Panax (Araliaceae). Mol. Ecol. Resour. 19, 1333-1345. https://doi.org/10.1111/1755-0998.13050. Jiang, K.W., Zhang, R., Zhang, Z.F., et al., 2020. DNA barcoding and molecular phylogeny of Dumasia (Fabaceae: Phaseoleae) reveals a cryptic lineage. Plant Divers. 42, 376-385. https://doi.org/10.1016/j.pld.2020.07.007. Kane, N., Sveinsson, S., Dempewolf, H., et al., 2012. Ultra-barcoding in cacao (Theobroma spp.; Malvaceae) using whole chloroplast genomes and nuclear ribosomal DNA. Am. J. Bot. 99, 320-329. https://doi.org/10.3732/ajb.1100570. Keng, H., 1994. Flora Malesianae Precursores-LVIII, Part Four. The Genus Schima (Theaceae) in Malesia. The Gardens' Bulletin, Singapore. Lefort, V., Desper, R., Gascuel, O., 2015. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol. Biol. Evol. 32, 2798-2800. https://doi.org/10.1093/molbev/msv150. Li, D.Z., Gao, L.M., Li, H.T., et al., 2011. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc. Natl. Acad. Sci. U.S.A. 108, 19641-19646. https://doi.org/10.1073/pnas.1104551108. Li, X., Wu, T., Cheng, Y., et al., 2020. Ecophysiological adaptability of four tree species in the southern subtropical evergreen broad-leaved forest to warming. Chin. J. Plant Ecol. 44, 1203-1214. https://doi.org/10.17521/cjpe.2020.0318. Li, X., Yang, Y., Henry, R.J., et al., 2015. Plant DNA barcoding: from gene to genome. Biol. Rev. 90, 157-166. https://doi.org/10.1111/brv.12104. Liang, Q.P., Xu, T.Q., Liu, B.L., et al., 2019. Sasanquasaponin IotaIotaIota from Schima crenata Korth induces autophagy through Akt/mTOR/p70S6K pathway and promotes apoptosis in human melanoma A375 cells. Phytomedicine 58, 152769. https://doi.org/10.1016/j.phymed.2018.11.029. Liu, B.B., Christopher, S.C., Hong, D.Y., et al. 2020. Phylogenetic relationships and chloroplast capture in the Amelanchier-Malacomeles-Peraphyllum clade (Maleae, Rosaceae): evidence from chloroplast genome and nuclear ribosomal DNA data using genome skimming. Mol. Phylogenet. Evol. 147, 106784. https://doi.org/10.1016/j.ympev.2020.106784. Liu, B.B., Ma, Z.Y., Ren, C., et al., 2021. Capturing single-copy nuclear genes, organellar genomes, and nuclear ribosomal DNA from deep genome skimming data for plant phylogenetics: a case study in Vitaceae. J. Syst. Evol. 59, 1124-1138. https://doi.org/10.1111/jse.12806. Lv, S.Y., Ye, X.Y., Li, Z.H., et al., 2023. Testing complete plastomes and nuclear ribosomal DNA sequences for species identification in a taxonomically difficult bamboo genus Fargesia. Plant Divers. 45, 147-155. https://doi.org/10.1016/j.pld.2022.04.002. Marcais, G., Kingsford, C., 2011. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764-770. Melchior, H., 1925. Die Naturlichen Pflanzenfamilien (2nd ed.) Verlag von Wilhelm Engelmann 28, 109-154. https://doi.org/10.1093/bioinformatics/btr011. Ming, T.L., Bartholomew, B., 2007. Theaceae. In: C.Y. Wu, P.H. Raven (Eds.), Flora of China. Mo, Z.Q., Wang, J., Moller, M., et al., 2023. Phylogenetic relationships and next-generation barcodes in the Genus Torreya reveal a high proportion of misidentified cultivated plants. Int. J. Mol. Sci. 24, 13216. https://doi.org/10.3390/ijms241713216. Nevill, P.G., Zhong, X., Tonti-Filippini, J., et al., 2020. Large scale genome skimming from herbarium material for accurate plant identification and phylogenomics. Plant Methods 16, 1. https://doi.org/10.1186/s13007-019-0534-5. Ogishima, M., Horie, S., Kimura, T. et al., 2019. Frequent chloroplast capture among Isodon (Lamiaceae) species in Japan revealed by phylogenies based on variation in chloroplast and nuclear DNA. Plant Species Biol. 34, 127-137. https://doi.org/10.1111/1442-1984.12239. Ondov, B.D., Treangen, T.J., Melsted, P., et al., 2016. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol. 17, 132. https://doi.org/10.1186/s13059-016-0997-x. Pamela, S. S., Douglas, E. S., 2003. Applying the bootstrap in phylogeny reconstruction. Statist. Sci. 18, 256-267. https://doi.org/10.1214/ss/1063994980. Percy, D.M., Argus, G.W., Cronk, Q.C., et al., 2014. Understanding the spectacular failure of DNA barcoding in willows (Salix): does this result from a trans-specific selective sweep? Mol. Ecol. 23, 4737-4756. https://doi.org/10.1111/mec.12837. Richard, G. H., Erica, L. L., 2014. Hybridization, introgression, and the nature of species boundaries, J. Hered. 105, 795-809. https://doi.org/10.1093/jhered/esu033. Rubinoff, D., Holland, B.S., 2005. Between two extremes: mitochondrial DNA is neither the panacea nor the nemesis of phylogenetic and taxonomic inference. Syst. Biol. 54,952-961. https://doi.org/10.1080/10635150500234674. Ruhsam, M., Rai, H. S., Mathews, S. et al. 2015. Does complete plastid genome sequencing improve species discrimination and phylogenetic resolution in Araucaria? Mol. Ecol. Resour. 15, 1067-1078. https://doi.org/10.1111/1755-0998.12375. Sarmashghi, S., Bohmann, K., MTP.Gilbert, et al., 2019. Skmer: assembly-free and alignment-free sample identification using genome skims. Genome Biol. 20,34. https://doi.org/10.1186/s13059-019-1632-4. Small, R., Cronn, R., Wendel, J., 2004. Use of nuclear genes for phylogeny reconstruction in plants. Aust. Syst. Bot. 17, 145-170. https://doi.org/10.1071/SB03015. Sohn, J.I., Nam, J.W., 2018. The present and future of de novo whole-genome assembly. Brief Bioinform. 19, 23-40. https://doi.org/10.1093/bib/bbw096. Song, F., Li, T., Burgess, K.S., et al., 2020. Complete plastome sequencing resolves taxonomic relationships among species of Calligonum L. (Polygonaceae) in China. BMC Plant Biol. 20, 261. https://doi.org/10.1186/s12870-020-02466-5. Stamatakis, A., 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312-1313. https://doi.org/10.1093/bioinformatics/btu033. Straub, S.C., Parks, M., Weitemier, K., et al., 2012. Navigating the tip of the genomic iceberg: next-generation sequencing for plant systematics. Am. J. Bot. 99, 349-364. https://doi.org/10.3732/ajb.1100335. Tang, C.Q, Han, P.B., Li, S.F., et al., 2020. Species richness, forest types and regeneration of Schima in the subtropical forest ecosystem of Yunnan, southwestern China. For. Ecosyst. 7, 35. https://doi.org/10.1186/s40663-020-00244-1. Twyford, A.D., Ennos, R. A., 2012. Next-generation hybridization and introgression. Heredity 108, 179-189. https://doi.org/10.1038/hdy.2011.68. Willis, J.C., Airy Shaw, H.K., 1985. A Dictionary of the Flowering Plants and Ferns (eighth ed.). Cambridge University Press. Wu, C., Wu, H.T.,Wang, Q., et al., 2019. Anticandidal potential of stem bark extract from Schima superba and the identification of its major anticandidal compound. Molecules 24, 1587. https://doi.org/10.3390/molecules24081587. Xu, T., Kong, L., Li, Q., 2022. Testing efficacy of assembly-free and alignment-free methods for species identification using genome skims, with patellogastropoda as a test case. Genes. 13, 1192. https://doi.org/10.3390/genes13071192. Yang, S.X., Yang, J.B., Lei, L.G., et al., 2004. Reassessing the relationships between Gordonia and Polyspora (Theaceae) based on the combined analyses of molecular data from the nuclear, plastid and mitochondrial genomes. Plant Syst. Evol. 248, 45-55. https://doi.org/10.1007/s00606-004-0178-3. Yang, Z., Zhang, R., Zhou, Z., 2022. The XTH Gene Family in Schima superba: genome-wide identification, expression profiles, and functional interaction network analysis. Front. Plant Sci. 13, 911761. https://doi.org/10.3389/fpls.2022.911761. Yi, H., Jin, L., 2013. Co-phylog: an assembly-free phylogenomic approach for closely related organisms. Nucleic Acids Res. 41, e75. https://doi.org/10.1093/nar/gkt003. Yi, T.S., Jin, G.H., Wen, J., 2015. Chloroplast capture and intra- and inter-continental biogeographic diversification in the Asian-new World disjunct plant genus Osmorhiza (Apiaceae). Mol. Phylogenet. Evol. 85, 10-21. https://doi.org/10.1016/j.ympev.2014.09.028. Yu, X., Yang, D., Guo, C., et al., 2018. Plant phylogenomics based on genome-partitioning strategies: progress and prospects. Plant Divers. 40, 158-164. https://doi.org/10.1016/j.pld.2018.06.005. Yu, X.Q., Drew, B.T., Yang, J.B., et al., 2017a. Comparative chloroplast genomes of eleven Schima (Theaceae) species: insights into DNA barcoding and phylogeny. PLoS One 12, e0178026. https://doi.org/10.1371/journal.pone.0178026. Yu, X.Q., Gao, L.M., Soltis, D.E., et al., 2017b. Insights into the historical assembly of East Asian subtropical evergreen broadleaved forests revealed by the temporal history of the tea family. New Phytol. 215,1235-1248. https://doi.org/10.1111/nph.14683. Yu, X.Q., Jiang, Y.Z., Folk, R.A., et al., 2022. Species discrimination in Schima (Theaceae): next-generation super-barcodes meet evolutionary complexity. Mol. Ecol. Resour. 22, 3161-3175. https://doi.org/10.1111/1755-0998.13683. Zeng, C.X., Hollingsworth, P.M., Yang, J., et al., 2018. Genome skimming herbarium specimens for DNA barcoding and phylogenomics. Plant Methods 14, 43. https://doi.org/10.1186/s13007-018-0300-0. Zhang, L., Huang, Y.W., Huang, J.L., et al., 2023. DNA barcoding of Cymbidium by genome skimming: call for next-generation nuclear barcodes. Mol. Ecol. Resour. 23, 424-439. https://doi.org/10.1111/1755-0998.13719. Zhang, Q., Zhao, L., Folk, R.A. et al., 2022. Phylotranscriptomics of Theaceae: generic-level relationships, reticulation and whole-genome duplication. Ann. Bot. 129, 457-471. https://doi.org/10.1093/aob/mcac007. Zheng, W., Ma, Y., Tigabu, M., et al., 2022. Capture of fire smoke particles by leaves of Cunninghamia lanceolata and Schima superba, and importance of leaf characteristics. Sci. Total Environ. 841, 156772. https://doi.org/10.1016/j.scitotenv.2022.156772. Zimmer, E.A., Wen, J., 2012. Using nuclear gene data for plant phylogenetics: progress and prospects. Mol. Phylogenet. Evol. 65, 774-785. https://doi.org/10.1111/jse.12174. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||