Aerts, R., Chapin, F.S., 2000. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. In: A.H. Fitter and D.G. Raffaelli (Eds.). Advances in Ecological Research. Academic Press, San Diego, pp. 1-67. Blomberg, S.P., Garland, T., Ives, A.R., 2003. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57, 717-745. de la Riva, E.G., Maranon, T., Violle, C., et al., 2017. Biogeochemical and ecomorphological niche segregation of mediterranean woody species along a local gradient. Front. Plant Sci. 8, 1242. Diaz, S., Kattge, J., Cornelissen, J.H.C., et al., 2016. The global spectrum of plant form and function. Nature 529,167-171. Du, E.Z., Terrer, C., Pellegrini, A.F.A., et al., 2020. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221-226. Elser, J.J., Fagan, W.F., Kerkhoff, A.J., et al., 2010. Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change. New Phytol. 186, 593-608. Guo, Y., Yang, X., Schob, C., et al., 2017. Legume shrubs are more nitrogen-homeostatic than non-legume shrubs. Front. Plant Sci. 8, 1662. Han, W.X., Fang, J.Y., Guo, D.L. et al., 2005. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol. 168, 377-385. Han, W.X., Fang, J.Y., Reich, P.B., et al., 2011. Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecol. Lett. 14, 788-796. He, J.-S., Wang, L., Flynn, D.F.B., et al., 2008. Leaf nitrogen: phosphorus stoichiometry across Chinese grassland biomes. Oecologia 155, 301-310. Hessen, D.O., Agren, G.I., Anderson, T.R., et al., 2004. Carbon, sequestration in ecosystems: the role of stoichiometry. Ecology 85, 1179-1192. Hooker, H.D., Jr., 1917. Liebig's law of the minimum in relation to general biological problems. Science 46, 197-204. Hou, E., Luo, Y., Kuang, Y., et al., 2020. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nat. Commun. 11, 637. Huang, L., Jin, C., Pan, Y., et al., 2023. Human activities and species biological traits drive the long-term persistence of old trees in human-dominated landscapes. Nat. Plants 9, 898-907. Jeyasingh, P.D., Weider, L.J., Sterner, R.W., 2009. Genetically-based trade-offs in response to stoichiometric food quality influence competition in a keystone aquatic herbivore. Ecol. Lett. 12, 1229-1237. Jin, Y., Qian, H., 2022. V.PhyloMaker2: an updated and enlarged R package that can generate very large phylogenies for vascular plants. Plant Divers. 44, 335-339. Kerkhoff, A.J., Fagan, W.F., Elser, J.J., et al., 2006. Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. Am. Nat. 168, E103-E122. Lambers, H., Raven, J.A., Shaver, G.R., et al., 2008. Plant nutrient-acquisition strategies change with soil age. Trends Ecol. Evol. 23, 95-103. Liu, Y., 2020. Optimum temperature for photosynthesis: from leaf- to ecosystem-scale. Sci. Bull. 65, 601-604. Ma, Z., Guo, D., Xu, X., et al., 2018. Evolutionary history resolves global organization of root functional traits. Nature 555, 94-97. McGroddy, M.E., Daufresne, T., Hedin, L.O., 2004. Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial Redfield-type ratios. Ecology 85, 2390-2401. Persson, J., Fink, P., Goto, A., et al., 2010. To be or not to be what you eat: regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos 119, 741-751. Quesada, C.A., Lloyd, J., Schwarz, M., et al., 2010. Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences 7, 1515-1541. Reich, P.B., Oleksyn, J., 2004. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl. Acad. Sci. U.S.A. 101, 11001-11006. Sardans, J., Janssens, I.A., Alonso, R., et al., 2015. Foliar elemental composition of European forest tree species associated with evolutionary traits and present environmental and competitive conditions. Global Ecol. Biogeogr. 24, 240-255. Sistla, S.A., Appling, A.P., Lewandowska, A.M., et al., 2015. Stoichiometric flexibility in response to fertilization along gradients of environmental and organismal nutrient richness. Oikos 124, 949-959. Sun, J., Zhou, T.-C., Liu, M., et al., 2020. Water and heat availability are drivers of the aboveground plant carbon accumulation rate in alpine grasslands on the Tibetan Plateau. Global Ecol. Biogeogr. 29, 50-64. Tian, D., Kattge, J., Chen, Y., et al., 2019. A global database of paired leaf nitrogen and phosphorus concentrations of terrestrial plants. Ecology 100, e02812. Tian, D., Yan, Z., Niklas, K.J., et al., 2018. Global leaf nitrogen and phosphorus stoichiometry and their scaling exponent. Natl. Sci. Rev. 5, 728-739. Vitousek, P.M., Farrington, H., 1997. Nutrient limitation and soil development: experimental test of a biogeochemical theory. Biogeochemistry 37, 63-75. Wright, I.J., Reich, P.B., Cornelissen, J.H.C., et al., 2005. Assessing the generality of global leaf trait relationships. New Phytol. 166, 485-496. Yang, X., Chi, X., Ji, C., et al., 2016. Variations of leaf N and P concentrations in shrubland biomes across northern China: phylogeny, climate, and soil. Biogeosciences 13, 4429-4438. Yu, Q., Elser, J.J., He, N., et al., 2011. Stoichiometric homeostasis of vascular plants in the Inner Mongolia grassland. Oecologia 166, 1-10. Yuan, Z.Y., Chen, H.Y.H., 2015. Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes. Nat. Clim. Change 5, 465-469. Yuan, Z.Y., Chen, H.Y.H., Reich, P.B., 2011. Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus. Nat. Commun. 2, 344. Zhang, J., He, N., Liu, C., et al., 2020. Variation and evolution of C:N ratio among different organs enable plants to adapt to N-limited environments. Global Change Biol. 26, 2534-2543. Zhou, T.-C., Sun, J., Liu, M., et al., 2020. Coupling between plant nitrogen and phosphorus along water and heat gradients in alpine grassland. Sci. Total Environ. 701, 134660. Zhou, T., Hou, G., Sun, J., et al., 2021a. Degradation shifts plant communities from S- to R-strategy in an alpine meadow, Tibetan Plateau. Sci. Total Environ. 800, 149572. Zhou, T.C., Sun, J., Zong, N., et al., 2021b. Community species diversity mediates the trade-off between aboveground and belowground biomass for grasses and forbs in degraded alpine meadow, Tibetan Plateau. Ecol. Evol. 11, 13259-13267. |