Plant Diversity ›› 2025, Vol. 47 ›› Issue (02): 189-200.DOI: 10.1016/j.pld.2024.12.005
• Articles • Previous Articles
Yu Fenga, Chaochao Yana, Wen-Qin Tub, Yu-Mei Yuana,c, Jing-Bo Wanga,c, Xiao-Juan Chena, Chang-Qiu Liud, Yundong Gaoa
Received:
2024-10-08
Revised:
2024-12-19
Published:
2025-04-03
Contact:
Yundong Gao,E-mail:gaoyd@cib.ac.cn
Supported by:
Yu Feng, Chaochao Yan, Wen-Qin Tu, Yu-Mei Yuan, Jing-Bo Wang, Xiao-Juan Chen, Chang-Qiu Liu, Yundong Gao. Multi-disciplinary evidence illuminates the speciation history of a monophyletic yet dimorphic lily group[J]. Plant Diversity, 2025, 47(02): 189-200.
Akcakaya, H.R., Burgman, M.A., Kindvall, O., et al., 2004. Species Conservation and Management: Case Studies. Oxford University Press, Oxford, New York. Alexander, D.H., Novembre, J., Lange, K., 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655-1664. https://doi.org/10.1101/gr.094052.109. Auwera, G. van der, O’Connor, B.D., 2020. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra. O’Reilly Media, Incorporated, Sebastopol, California. Avise, J.C., 2000. Phylogeography: The History and Formation of Species. Harvard University Press, Cambridge, Massachusetts. Blanckaert, A., Bank, C., Hermisson, J., 2020. The limits to parapatric speciation 3: evolution of strong reproductive isolation in presence of gene flow despite limited ecological differentiation. Philos. Trans. R. Soc. B-Biol. Sci. 375, 20190532. https://doi.org/10.1098/rstb.2019.0532. Bolnick, D.I., Fitzpatrick, B.M., 2007. Sympatric speciation: Models and empirical evidence. Annu. Rev. Ecol. Evol. Syst. 38, 459-487. https://doi.org/10.1146/annurev.ecolsys.38.091206.095804. Bouckaert, R., Vaughan, T.G., Barido-Sottani, J., et al., 2019. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650. https://doi.org/10.1371/journal.pcbi.1006650. Brothers, A.N., Atwell, J.W., Caruso, E.C., 2014. The role of pollinator-mediated selection in the divergence of floral traits between two closely related plant species. Int. J. Plant Sci. 175, 287-295. https://doi.org/10.1086/673883. Brown, J.L., Carnaval, A.C., 2019. A tale of two niches: methods, concepts, and evolution. Front. Biogeogr. 11, e44158. https://doi.org/10.21425/F5FBG44158. Bu, D., Luo, H., Huo, P., et al., 2021. KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res. 49, W317-W325. https://doi.org/10.1093/nar/gkab447. Capella-Gutierrez, S., Silla-Martinez, J.M., Gabaldon, T., 2009. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972-1973. https://doi.org/10.1093/bioinformatics/btp348. Chen, J., Huang, Y., Brachi, B., et al., 2019. Genome-wide analysis of Cushion willow provides insights into alpine plant divergence in a biodiversity hotspot. Nat. Commun. 10, 5230. https://doi.org/10.1038/s41467-019-13128-y. Chen, S., 2023. Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp. iMeta 2, e107. https://doi.org/10.1002/imt2.107. Comber, H.F., 1949. A new classification of the genus Lilium. R.H.S. Lily Year-Book 13, 86-105. Coyne, J.A., Orr, H.A., 2004. Speciation. Oxford University Press, Oxford, New York. Darriba, D., Posada, D., Kozlov, A.M., et al., 2020. ModelTest-NG: A new and scalable tool for the selection of DNA and protein evolutionary models. Mol. Biol. Evol. 37, 291-294. https://doi.org/10.1093/molbev/msz189. De Queiroz, K., 2007. Species concepts and species delimitation. Syst. Biol. 56, 879-886. https://doi.org/10.1080/10635150701701083. Di Cola, V., Broennimann, O., Petitpierre, B., et al., 2017. ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774-787. https://doi.org/10.1111/ecog.02671. Donoghue, M.J., 2022. What in the world is a species? Arnoldia 79, 48-53. Du, F.K., Petit, R.J., Liu, J.Q., 2009. More introgression with less gene flow: chloroplast vs. mitochondrial DNA in the Picea asperata complex in China, and comparison with other Conifers. Mol. Ecol. 18, 1396-1407. https://doi.org/10.1111/j.1365-294X.2009.04107.x. Du, Y., He, H., Wang, Z., et al., 2014. Molecular phylogeny and genetic variation in the genus Lilium native to China based on the internal transcribed spacer sequences of nuclear ribosomal DNA. J. Plant. Res. 127, 249-263. https://doi.org/10.1007/s10265-013-0600-4. Duan, Q., Liu, F., Gui, D., et al., 2022. Phylogenetic analysis of wild species and the maternal origin of cultivars in the genus Lilium using 114 plastid genomes. Front. Plant Sci. 13, 865606. https://doi.org/10.3389/fpls.2022.865606. Emms, D.M., Kelly, S., 2019. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238. https://doi.org/10.1186/s13059-019-1832-y. Excoffier, L., Dupanloup, I., Huerta-Sanchez, E., et al., 2013. Robust demographic inference from genomic and SNP data. PLoS Genet. 9, e1003905. https://doi.org/10.1371/journal.pgen.1003905. Fenske, M.P., Nguyen, L.P., Horn, E.K., et al., 2018. Circadian clocks of both plants and pollinators influence flower seeking behavior of the pollinator hawkmoth Manduca sexta. Sci. Rep. 8, 2842. https://doi.org/10.1038/s41598-018-21251-x. Gao, Y.-D., Gao, X.-F., Harris, A., 2019. Species boundaries and parapatric speciation in the complex of alpine shrubs, Rosa sericea (Rosaceae), based on population genetics and ecological tolerances. Front. Plant Sci. 10, 321. https://doi.org/10.3389/fpls.2019.00321. Gao, Y.-D., Harris, A., Zhou, S.-D., et al., 2013. Evolutionary events in Lilium (including Nomocharis, Liliaceae) are temporally correlated with orogenies of the Q-T plateau and the Hengduan Mountains. Mol. Phylogenet. Evol. 68, 443-460. https://doi.org/10.1016/j.ympev.2013.04.026. Gao, Y.-D., Harris, A.J., He, X.-J., 2015. Morphological and ecological divergence of Lilium and Nomocharis within the Hengduan Mountains and Qinghai-Tibetan Plateau may result from habitat specialization and hybridization. BMC Evol. Biol. 15, 147. https://doi.org/10.1186/s12862-015-0405-2. Gaudinier, A., Blackman, B.K., 2020. Evolutionary processes from the perspective of flowering time diversity. New Phytol. 225, 1883-1898. https://doi.org/10.1111/nph.16205. Givnish, T., Skinner, M., Resetnik, I., et al., 2020. Evolution, geographical spread and floral diversification of the genus Lilium with special reference to the lilies of North America. The Lily Yearbook of the North American Lily Society 74, 26-44. Grant, V., 1994. Modes and origins of mechanical and ethological isolation in angiosperms. Proc. Natl. Acad. Sci. U.S.A. 91, 3-10. https://doi.org/10.1073/pnas.91.1.3. Haas, B.J., Papanicolaou, A., Yassour, M., et al., 2013. De novo transcript sequence reconstruction from RNA-Seq: reference generation and analysis with Trinity. Nat. Protoc. 8, 1494-1512. https://doi.org/10.1038/nprot.2013.084. Hayashi, K., Kawano, S., 2000. Molecular systematics of Lilium and allied genera (Liliaceae): phylogenetic relationships among Lilium and related genera based on the rbcL and matK gene sequence data. Plant Species Biol. 15, 73-93. https://doi.org/10.1046/j.1442-1984.2000.00025.x. Hijmans, R. J., Phillips, S., Leathwick, J., et al. 2022. dismo, version 1.3-9. Available at: https://cran.r-project.org/web/packages/dismo (Accessed 21 May 2022). Hong, D.-Y., 2016. Biodiversity pursuits need a scientific and operative species concept. Biodivers. Sci. 24, 979. https://doi.org/10.17520/biods.2016203. Hu, L., Yang, R., Wang, Y.-H., et al., 2021. The natural hybridization between species Ligularia nelumbifolia and Cremanthodium stenoglossum (Senecioneae, Asteraceae) suggests underdeveloped reproductive isolation and ambiguous intergeneric boundary. AoB Plants 13, plab012. https://doi.org/10.1093/aobpla/plab012. IBM Corp., 2020. IBM SPSS Statistics for Windows (Version 27.0) [Computer software]. Jin, J.-J., Yu, W.-B., Yang, J.-B., et al., 2020. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21, 241. https://doi.org/10.1186/s13059-020-02154-5. Katoh, K., Standley, D.M., 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772-780. https://doi.org/10.1093/molbev/mst010. Kim, H.T., Lim, K.-B., Kim, J.S., 2019. New insights on Lilium phylogeny based on a comparative phylogenomic study using complete plastome sequences. Plants 8, 547. https://doi.org/10.3390/plants8120547. Korunes, K.L., Samuk, K., 2021. pixy: Unbiased estimation of nucleotide diversity and divergence in the presence of missing data. Mol. Ecol. Resour. 21, 1359-1368. https://doi.org/10.1111/1755-0998.13326. Kozlov, A.M., Darriba, D., Flouri, T., et al., 2019. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453-4455. https://doi.org/10.1093/bioinformatics/btz305. Li, H., 2011. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987-2993. https://doi.org/10.1093/bioinformatics/btr509. Li, H., 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. https://doi.org/10.48550/arXiv.1303.3997. Li, H., Handsaker, B., Wysoker, A., et al., 1000 Genome Project Data Processing Subgroup, 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078-2079. https://doi.org/10.1093/bioinformatics/btp352. Li, J., Cai, J., Qin, H.-H., et al., 2022. Phylogeny, age, and evolution of tribe Lilieae (Liliaceae) based on whole plastid genomes. Front. Plant Sci. 12, 699226. https://doi.org/10.3389/fpls.2021.699226. Li, Q., Xiang, C., Xu, L., et al., 2020. SMRT sequencing of a full-length transcriptome reveals transcript variants involved in C18 unsaturated fatty acid biosynthesis and metabolism pathways at chilling temperature in Pennisetum giganteum. BMC Genomics 21, 52. https://doi.org/10.1186/s12864-019-6441-3. Li, W., Godzik, A., 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658-1659. https://doi.org/10.1093/bioinformatics/btl158. Liang, S.-Y., Tamura, M., 2000. Lilium L. In: Wu, Z.Y., Raven, P.H. (Eds.) Flora of China vol. 24. Science Press, Beijing; & Missouri Botanical Garden Press, St. Louis, pp. 135-159. Liu, C.-Q., Gao, Y.-D., Niu, Y., et al., 2019. Floral adaptations of two lilies: implications for the evolution and pollination ecology of huge trumpet-shaped flowers. Am. J. Bot. 106, 622-632. https://doi.org/10.1002/ajb2.1275. Liu, C.-Q., Niu, Y., Lu, Q.-B., et al., 2022. Papilio butterfly vs. hawkmoth pollination explains floral syndrome dichotomy in a clade of Lilium. Bot. J. Linn. Soc. 199, 678-693. https://doi.org/10.1093/botlinnean/boab074. Liu, J., 2016. The “integrative species concept” and “species on the speciation way.” Biodivers. Sci. 24, 1004-1008. https://doi.org/10.17520/biods.2016222. Liu, X., Fu, Y.-X., 2020. Stairway Plot 2: Demographic history inference with folded SNP frequency spectra. Genome Biol. 21, 280. https://doi.org/10.1186/s13059-020-02196-9. Liu, Y., Lai, Y.-J., Ye, J.-F., et al., 2023. The Sino-Himalayan flora evolved from lowland biomes dominated by tropical floristic elements. BMC Biol. 21, 239. https://doi.org/10.1186/s12915-023-01746-4. Lu, W.-X., Wang, Z.-Z., Hu, X.-Y., et al., 2023. Echoes of the past: niche evolution, range dynamics, and their coupling shape the distribution of species in the Chrysanthemum zawadskii species complex. Front. Ecol. Evol. 11, 1250491. https://doi.org/10.3389/fevo.2023.1250491. Ma, X., Sun, W., Zhu, W., et al., 2017. Resolving the phylogenetic relationships and evolutionary history of the East Asian endemic genus Rodgersia (Saxifragaceae) using multilocus data. Perspect. Plant Ecol. Evol. Syst. 25, 20-28. https://doi.org/10.1016/j.ppees.2016.12.005. Mallet J., 2008. Hybridization, ecological races and the nature of species: empirical evidence for the ease of speciation. Phil. Trans. R. Soc. B-Biol. Sci. 363, 2971-2986. https://10.1098/rstb.2008.0081. Manni, M., Berkeley, M.R., Seppey, M., et al., 2021. BUSCO: Assessing Genomic Data Quality and Beyond. Curr. Protoc. 1, e323. https://doi.org/10.1002/cpz1.323. Marasek-Ciolakowska, A., Nishikawa, T., Shea, D.J., et al., 2018. Breeding of lilies and tulips-Interspecific hybridization and genetic background-. Breed. Sci. 68, 35-52. https://doi.org/10.1270/jsbbs.17097. Mason-Gamer, R.J., White, D.M., 2024. The phylogeny of the Triticeae: Resolution and phylogenetic conflict based on genome wide nuclear loci. Am. J. Bot. 111, e16404. https://doi.org/10.1002/ajb2.16404. Mayr, E., 1963. Animal Species and Evolution. Harvard University Press, Cambridge, Massachusetts. https://doi.org/10.4159/harvard.9780674865327. Minh, B., Schmidt, H., Chernomor, O., et al., 2020. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530-1534. https://doi.org/10.1093/molbev/msaa015. Mo, Z.-Q., Fu, C.-N., Zhu, M.-S., et al., 2022. Resolution, conflict and rate shifts: insights from a densely sampled plastome phylogeny for Rhododendron (Ericaceae). Ann. Bot. 130, 687-701. https://doi.org/10.1093/aob/mcac114. Nishikawa, T., Okazaki, K., Uchino, et al., 1999. A molecular phylogeny of Lilium in the internal transcribed spacer region of nuclear ribosomal DNA. J. Mol. Evol. 49, 238-249. https://doi.org/10.1007/pl00006546. Nosil, P., 2008. Speciation with gene flow could be common. Mol. Ecol. 17, 2103-2106. https://doi.org/10.1111/j.1365-294X.2008.03715.x. Ortiz, E.M., 2019. vcf2phylip v2.0: Convert a VCF matrix into several matrix formats for phylogenetic analysis. https://doi.org/10.5281/zenodo.2540861. Phillips, S.J., Dudik, M., 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161-175. https://doi.org/10.1111/j.0906-7590.2008.5203.x. Purcell, S., Neale, B., Todd-Brown, K., et al., 2007. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559-575. https://doi.org/10.1086/519795. Ren, G., Conti, E., Salamin, N., 2015. Phylogeny and biogeography of Primula sect. Armerina: implications for plant evolution under climate change and the uplift of the Qinghai-Tibet Plateau. BMC Evol. Biol. 15, 161. https://doi.org/10.1186/s12862-015-0445-7. Ronquist, F., Teslenko, M., van der Mark, P., et al., 2012. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539-542. https://doi.org/10.1093/sysbio/sys029. Rozas, J., Ferrer-Mata, A., Sanchez-DelBarrio, J.C., et al., 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299-3302. https://doi.org/10.1093/molbev/msx248. Schluter, D., 2000. The Ecology of Adaptive Radiation. Oxford University Press, Oxford, New York. Schluter, D., McPeek, A.E.M.A., 2000. Ecological character displacement in adaptive radiation. Am. Nat. 156, S4-S16. https://doi.org/10.1086/303412. Schoener, T.W., 1968. The Anolis Lizards of Bimini: Resource partitioning in a complex fauna. Ecology 49, 704-726. https://doi.org/10.2307/1935534. Talavera, G., Castresana, J., 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564-577. https://doi.org/10.1080/10635150701472164. Van der Niet, T., Peakall, R., Johnson, S.D., 2014. Pollinator-driven ecological speciation in plants: new evidence and future perspectives. Ann. Bot. 113, 199-211. https://doi.org/10.1093/aob/mct290. Wang, J., Dong, S., Yang, L., et al., 2020. Allopolyploid speciation accompanied by gene flow in a tree fern. Mol. Biol. Evol. 37, 2487-2502. https://doi.org/10.1093/molbev/msaa097. Warren, D.L., Glor, R.E., Turelli, M., 2010. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33, 607-611. https://doi.org/10.1111/j.1600-0587.2009.06142.x. Wheeler, Q.D., Meier, R., 2000. Species Concepts and Phylogenetic Theory. Columbia University Press, New York. Wilkins, J.S., 2009. Species: A History of the Idea. University of California Press, Berkeley, California. Wogan, G.O.U., Richmond, J.Q., 2015. Niche divergence builds the case for ecological speciation in skinks of the Plestiodon skiltonianus species complex. Ecol. Evol. 5, 4683-4695. https://doi.org/10.1002/ece3.1610. Wu, D., Hu, Y., Akashi, S., et al., 2022. Lateral transfers lead to the birth of momilactone biosynthetic gene clusters in grass. Plant J. 111, 1354-1367. https://doi.org/10.1111/tpj.15893. Xia, X.-M., Yang, M.-Q., Li, C.-L., et al., 2022. Spatiotemporal evolution of the global species diversity of Rhododendron. Mol. Biol. Evol. 39, msab314. https://doi.org/10.1093/molbev/msab314. Xu, S., Chen, R., Zhang, X., et al., 2024. The evolutionary tale of lilies: Giant genomes derived from transposon insertions and polyploidization. Innovation 5, 100726. https://doi.org/10.1016/j.xinn.2024.100726. Yang, J., Lee, S.H., Goddard, M.E., et al., 2011. GCTA: A tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76-82. https://doi.org/10.1016/j.ajhg.2010.11.011. Yuan, Y., Gao, Y., 2024. Lilium liangiae, a new species in the genus Lilium (Liliaceae) that reveals parallel evolution within morphology. Front. Plant Sci. 15, 1371237. https://doi.org/10.3389/fpls.2024.1371237. Zhang, W., Wang, H., Zhang, T., et al., 2023. Geographic-genomic and geographic-phenotypic differentiation of the Aquilegia viridiflora complex. Hortic. Res. 10, uhad041. https://doi.org/10.1093/hr/uhad041. Zhou, B.-F., Yuan, S., Crowl, A.A., et al., 2022. Phylogenomic analyses highlight innovation and introgression in the continental radiations of Fagaceae across the Northern Hemisphere. Nat. Commun. 13, 1320. https://doi.org/10.1038/s41467-022-28917-1. Zhou, N., Miao, K., Liu, C., et al., 2024. Historical biogeography and evolutionary diversification of Lilium (Liliaceae): New insights from plastome phylogenomics. Plant Divers. 46, 219-228. https://doi.org/10.1016/j.pld.2023.07.009. |
[1] | Liang Zhang, Zhen-Long Liang, Xue-Ping Fan, Ngan Thi Lu, Xin-Mao Zhou, Hong-Jin Wei, Li-Bing Zhang. The Indo-Burma biodiversity hotspot for ferns: Updated phylogeny, hidden diversity, and biogeography of the java fern genus Leptochilus (Polypodiaceae) [J]. Plant Diversity, 2024, 46(06): 698-712. |
[2] | Ting-Ting Zou, Sen-Tao Lyu, Qi-Lin Jiang, Shu-He Shang, Xiao-Fan Wang. Pre- and post-pollination barriers between two exotic and five native Sagittaria species: Implications for species conservation [J]. Plant Diversity, 2023, 45(04): 456-468. |
[3] | Jin-Feng Wu, Dong-Rui Jia, Rui-Juan Liu, Zhi-Li Zhou, Lin-Lin Wang, Min-Yu Chen, Li-Hua Meng, Yuan-Wen Duan. Multiple lines of evidence supports the two varieties of Halenia elliptica (Gentianaceae) as two species [J]. Plant Diversity, 2022, 44(03): 290-299. |
[4] | Harue Abe, Hiroki Miura, Yoshitaka Motonaga. Quantitative classification of Camellia japonica and Camellia rusticana (Theaceae) based on leaf and flower morphology [J]. Plant Diversity, 2021, 43(03): 216-224. |
[5] | Lin-Lin Wang, Zhi-Qiang Zhang, Yong-Ping Yang, Yuan-Wen Duan. The coexistence of hermaphroditic and dioecious plants is associated with polyploidy and gender dimorphism in Dasiphora fruticosa [J]. Plant Diversity, 2019, 41(05): 323-329. |
[6] | Xinhui Li, Hang Sun. Phylogenetic pattern of alpine plants along latitude and longitude in Hengduan Mountains Region [J]. Plant Diversity, 2017, 39(01): 37-43. |
[7] | Jing Yang, Zerui Gao, Weibang Sun, Changqin Zhang. High regional genetic differentiation of an endangered relict plant Craigia yunnanensis and implications for its conservation [J]. Plant Diversity, 2016, 38(05): 221-226. |
[8] | LIU Yong-Liang-, MAO Jian-Feng-, WANG Xiao-Ru-, LI Yue. Geographic Isolation between the Homoploid Hybrid Pinus densata and Its Parental Pinus yunnanensis [J]. Plant Diversity, 2011, 33(3): 269-274. |
[9] | CHEN Lin-, ZHANG Y-Nan-, QIU Yi-Lan-, TIAN Hui-Qiao. Isolation of Embryo Sac Cells of Lettuce (Lactuca sativa) [J]. Plant Diversity, 2010, 32(4): 323-327. |
[10] |
WANG Hua , , TANG Shu-Mei, LIAO Xiang-Jun , CAO Qi-Min.
Physiological and Molecular Mechanisms of Mn Uptake by Hyperaccumulting Plant Polygonum hydropiper (Polygonaceae) [J]. Plant Diversity, 2008, 30(04): 489-495. |
[11] |
WANG Hai-Kun, , LI Tao, ZHAO Dan-Dan, LI Ling-Fei, SHA Tao, ZHAO Zhi-Wei . Cultivation and Molecular Identification of Two Bolete Strains Isolated from Boletus edulis Complex of Yunnan, China [J]. Plant Diversity, 2007, 29(05): 559-562. |
[12] | MAO Kang-Shan , YAO Xing-Lei , HUANG Zhao-Hui. Molecular Phylogeny and Species Speciation of Adoxaceae. s. s [J]. Plant Diversity, 2005, 27(06): 620-628. |
[13] | ZENG Ying, SANG Yu-Ying, HU Jin-Yong, LI Zhi-Jian. Purification and Characterization of a Trypsin Inhibitor from Tinospora crispa [J]. Plant Diversity, 2002, 24(01): 1-3. |
[14] | GONG Xun PAN Yue-Zhi YANG Zhi-Yun. The Cross-Compatibility of Magnoliaceae [J]. Plant Diversity, 2001, 23(03): 1-3. |
[15] | LIAO Zhou- Yu,DANG Cheng- Lin. Study on the Ecotypes of Allium wallichii in Jizu Mountain,Binchuan County, Yunnan Province [J]. Plant Diversity, 1998, 20(04): 1-3. |
Viewed | ||||||||||||||||||||||||||||||||||
Full text 0
|
|
|||||||||||||||||||||||||||||||||
Abstract 3
|
|
|||||||||||||||||||||||||||||||||