Plant Diversity ›› 2025, Vol. 47 ›› Issue (02): 323-336.DOI: 10.1016/j.pld.2025.01.005
• Articles • Previous Articles
Mingliu Yang, Zhi-Qiang Zhang
Received:
2024-10-24
Revised:
2025-01-22
Published:
2025-04-03
Contact:
Zhi-Qiang Zhang,E-mail:zq.zhang@ynu.edu.cn
Supported by:
Mingliu Yang, Zhi-Qiang Zhang. Quantitative nectar spur length governs nonrandom mating in a bee-pollinated Aquilegia species[J]. Plant Diversity, 2025, 47(02): 323-336.
Anderson, B., Alexandersson, R., Johnson, S.D., 2010. Evolution and coexistence of pollination ecotypes in an African Gladiolus (Iridaceae). Evolution 64, 960-972. Anderson, B., Pauw, A., Barrett, S.C.H., 2016. Pollination, mating and reproductive fitness in a plant population with bimodal floral-tube length. J. Evol. Biol. 29, 1631-1642. Barrett, S.C.H., 2003. Mating strategies in flowering plants: the outcrossing-selfing paradigm and beyond. Philos. Trans. R. Soc. B-Biol. Sci. 358, 991-1004. Barrett, S.C.H., Eckert, C.G., 1990. Variation and evolution of mating systems in seed plants. In: Kawano, S. (Ed.), Biological Approaches and Evolutionary Trends in Plants. Academic Press, Pittsburgh, pp. 229-254. Barrett, S.C.H., Harder, L.D., 2017. The ecology of mating and its evolutionary consequences in seed plants. Annu. Rev. Ecol. Evol. Syst. 48, 135-157. Barrett, S.C.H., Hodgins, K.A., 2006. Floral design and the evolution of asymmetrical mating. In: Harder, L.D., Barrett, S.C.H. (Eds.), The Ecology and Evolution of Flowers. Oxford University Press, New York, pp. 239-255. Barrett, S.C.H., Shore, J.S., 1987. Variation and evolution of breeding systems in the Turnera ulmifolia L. complex (Turneraceae). Evolution 41, 340-354. Bertsch, A., Schweer, H., 2011. Labial gland marking secretions of male Bombus lucorum bumblebees from Europe and China reveal two separate species: B. lucorum (Linnaeus 1761) and Bombus minshanicola (Bischoff 1936). Biochem. Systemat. Ecol. 39, 587-593. Bischoff, H., 1936. Schwedisch-chinesische wissenschaftliche Expedition nach den nordwestlichen Provinzen Chinas. 56. Hymenoptera. 10. Bombinae. Ark. Zool. 27A, 1-27. Brunet, J., Eckert, C.G., 1998. Effects of floral morphology and display on outcrossing in Blue Columbine, Aquilegia caerulea (Ranunculaceae). Funct. Ecol. 12, 596-606. Brunet, J., Sweet, H.R., 2006. Impact of insect pollinator group and floral display size on outcrossing rate. Evolution 60, 234-246. Campbell, D.R., Waser, N.M., Price, M.V., et al., 1991. Components of phenotypic selection: pollen export and flower corolla width in Ipomopsis aggregata. Evolution 45, 1458-1467. Charlesworth, D., Charlesworth, B., 1987. Inbreeding depression and its evolutionary consequences. Annu. Rev. Ecol. Systemat. 18, 237-268. Cheptou, P.O., Donohue, K., 2010. Environment-dependent inbreeding depression: its ecological and evolutionary significance. New Phytol. 189, 395-407. Christopher, D.A., Mitchell, R.J., Karron, J.D., et al., 2019. Hermaphroditism promotes mate diversity in flowering plants. Am. J. Bot. 106, 1131-1136. Cutter, A.D., 2019. Reproductive transitions in plants and animals: selfing syndrome, sexual selection and speciation. New Phytol. 224, 1080-1094. Devaux, C., Lande, R., 2008. Incipient allochronic speciation due to non-selective assortative mating by flowering time, mutation and genetic drift. Proc. Roy. Soc. B-Biol. Sci. 275, 2723-2732. Eckert, C.G., Kalisz, S., Winn, A.A., et al., 2010. Plant mating systems in a changing world. Trends Ecol. Evol. 25, 35-43. Edwards, M.B., Choi, G.P.T., Ballerini, E.S., et al., 2021. Genetic architecture of floral traits in bee- and hummingbird-pollinated sister species of Aquilegia (columbine). Evolution 75, 2197-2216. Epperson, B.K., Clegg, M.T., 1987. Frequency-dependent variation for outcrossing rate among flower-color morphs of Ipomoea purpurea. Evolution 41, 1302-1311. Fenster, C.B., Armbruster, W.S., Wilson, P., et al., 2004. Pollination syndromes and floral specialization. Annu. Rev. Ecol. Evol. Syst. 35, 375-403. Fernandez-Mazuecos, M., Blanco-Pastor, J.L., Glover, B.J., et al., 2018. Macroevolutionary dynamics of nectar spurs, a key evolutionary innovation. New Phytol. 222, 1123-1138. Fitzgerald, J.L., Ogilvie, J.E., CaraDonna, P.J., 2022. Ecological drivers and consequences of bumble bee body size variation environmental entomology. Environ. Entomol. 51, 1055-1068. Gamba, D., Muchhala, N., 2023. Pollinator type strongly impacts gene flow within and among plant populations for six neotropical species. Ecology 104, e3845. Garcia-Gonzalez, F., Yasui, Y., Evans, J.P., 2015. Mating portfolios: bet-hedging, sexual selection and female multiple mating. Proc. Roy. Soc. B-Biol. Sci. 282, 20141525. Ghazoul, J., 2005. Pollen and seed dispersal among dispersed plants. Biol. Rev. 80, 413-443. Godineau, C., Ronce, O., Devaux, C., 2022. Assortative mating can help adaptation of flowering time to a changing climate: insights from a polygenic model. J. Evol. Biol. 35, 491-508. Goodwillie, C., Kalisz, S., Eckert, C.G., 2005. The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Annu. Rev. Ecol. Evol. Syst. 36, 47-79. Goodwillie, C., Sargent, R.D., Winn A.A., et al., 2010. Correlated evolution of mating system and floral display traits in flowering plants and its implications for the distribution of mating system variation. New Phytol. 185, 311-321. Harder, L.D., Barrett, S.C.H., 1995. Mating cost of large floral displays in hermaphrodite plants. Nature 373, 512-515. Harder, L.D., Barrett, S.C.H., 1996. Pollen dispersal and mating patterns in animal-pollinated plants. In: Lloyd, D.G., Barrett S.C.H. (Eds.), Floral Biology: Studies on Floral Evolution in Animal-Pollinated Plants. Springer, New York, pp. 140-190. Herlihy, C.R., Eckert, C.G., 2004. Experimental dissection of inbreeding and its adaptive significance in a flowering plant, Aquilegia canadensis (Ranunculaceae). Evolution 58, 2693-2703. Herlihy, C.R., Eckert, C.G., 2005. Evolution of self-fertilization at geographical range margins? A comparison of demographic, floral, and mating system variables in central vs. peripheral populations of Aquilegia canadensis (Ranunculaceae). Am. J. Bot. 92, 744-751. Hodges, S.A., 1997. Floral nectar spurs and diversification. Int. J. Plant Sci. 158, S81-S88. Hodges, S.A., Whittall, J.B., Yang, J.Y., et al., 2002. Genetics of floral traits influencing reproductive isolation between Aquilegia formosa and Aquilegia pubescens. Am. Nat. 159, 51-60. Holmquist, K.G., Mitchell, R.J., Karron J.D., 2012. Influence of pollinator grooming on pollen-mediated gene dispersal in Mimulus ringens (Phrymaceae). Plant Species Biol. 27, 77-85. Ison, J.L., Weis, A.E., 2017. Temporal population genetic structure in the pollen pool for flowering time: a field experiment with Brassica rapa (Brassicaceae). Am. J. Bot. 104, 1569-1580. Jones, K.N., Reithel, J.S., 2001. Pollinator-mediated selection on a flower color polymorphism in experimental populations of Antirrhinum (Scrophulariaceae). Am. J. Bot. 88, 447-454. Jones, O.R., Wang, J., 2010. COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol. Ecol. Resour. 10, 551-555. Karron, J.D., Mitchell, R.J., 2012. Effects of floral display size on male and female reproductive success in Mimulus ringens. Ann. Bot. 109, 563-570. Kennedy, B.F., Sabara, H.A., Husband, B.C., 2006. Pollinator-mediated assortative mating in mixed ploidy populations of Chamerion angustifolium (Onagraceae). Oecologia 150, 398-408. Kulkarni, R.N., 1999. Evidence for phenotypic assortative mating for flower colour in periwinkle. Plant Breed. 118, 561-564. Levin, D.A., Kerster, H.W., 1974. Gene flow in seed plants. Evol. Biol. 7, 139-220. Lloyd, D.G., 1980. Demographic factors and mating patterns in angiosperms. In: Solbrig, O.T. (Ed.), Demography and Evolution in Plant Populations. Blackwell, Oxford, pp. 67-88. Lloyd, D.G, Webb, C.J., 1992. The selection of heterostyly. In: Barrett, S.C.H. (Ed.), Evolution and Function of Heterostyly. Springer, New York, pp. 179-207. Maad, J., Nilsson, L.A., 2004. On the mechanism of floral shifts in speciation: gained pollination efficiency from tongue- to eye-attachment of pollinia in Platanthera (Orchidaceae). Biol. J. Linn. Soc. 83, 481-495. Medrano, M., Requerey, R., Herrera, C.M., et al., 2012. Herkogamy and mate diversity in the wild daffodil Narcissus longispathus: beyond the selfing-outcrossing paradigm in the evolution of mixed mating. Plant Biol. 14, 801-810. Merrill, R.M., Rastas, P. Martin, S.H. et al., 2019. Genetic dissection of assortative mating behavior. PLoS Biol. 17, e2005902. Minnaar, C., Anderson, B., Karron, J.D. et al., 2019a. Plant-pollinator interactions along the pathway to paternity. Ann. Bot. 123, 225-245. Minnaar, C., de Jager, M.L., Anderson, B., 2019b. Intraspecific divergence in floral-tube length promotes asymmetric pollen movement and reproductive isolation. New Phytol. 224, 1160-1170. Mitchell, R.J., Karron, J.D., Bell, J.M., et al., 2005. Patterns of multiple paternity in fruits of Mimulus ringens (Phrymaceae). Am. J. Bot. 92, 885-890. Moeller, D.A., Briscoe-Runquist, R.D., Winn A.A., et al., 2017. Global biogeography of mating system variation in seed plants. Ecol. Lett. 20, 375-384. Munoz, F., Violle, C., Cheptou, P.O., 2016. CSR ecological strategies and plant mating systems: outcrossing increases with competitiveness but stress-tolerance is related to mixed mating. Oikos 125, 1296-1303. Munz, P., 1946. Aquilegia: the cultivated and wild columbines. Gentes Herb. 7, 95-97. Nilsson, L., 1988. The evolution of flowers with deep corolla tube. Nature 334, 147-149. Nora, S., Aparicio, A., Albaladejo, R.G., 2016. High correlated paternity leads to negative effects on progeny performance in two Mediterranean shrub species. PLoS One 11, e0166023. Opedal, OE.H., 2018. Herkogamy, a principal functional trait of plant reproductive biology. Int. J. Plant Sci. 179, 677-687. Otto, S.P., Sevedio, M.R., Nuismer, S.L., 2008. Frequency-dependent selection and the evolution of assortative mating. Genetics 179, 2091-2112. Pannell, J.R., Labouche, A.M., 2013. The incidence and selection of multiple mating in plants. Philos. Trans. R. Soc. B-Biol. Sci. 368, 20120051. Peischl, S., Schneiderr, K.A., 2010. Evolution of dominance under frequency-dependent intraspecific competition. Evolution 64, 561-582. R Core Team, 2022. R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Ritland, K., 1989. Correlated matings in the partial selfer Mimulus guttatus. Evolution 43, 848-859. Rubin, M.J., Schmid, K.M., Friedman, J., 2019. Assortative mating by flowering time and its effect on correlated traits in variable environments. Ecol. Evol. 9, 471-481. Rymer, P.D., Johnson, S.D., Savolainen, V., 2010. Pollinator behaviour and plant speciation: can assortative mating and disruptive selection maintain distinct floral morphs in sympatry? New Phytol. 188, 426-436. Takebayashi, N., Wolf, D.E., Delph, L.F., 2006. Effect of variation in herkogamy on outcrossing within a population of Gilia achilleifolia. Heredity 96, 159-165. Terry, C., 2018. bipartiteD3: Interactive Bipartite Graphs. R package version 0.1.0. URL https://CRAN.R-project.org/package=bipartiteD3. Turelli, M., Moyle, L.C., 2007. Asymmetric post-mating isolation: Darwin's corollary to Haldane's rule. Genetics 176, 1059-1088. Wang, J.L., EL-Kassaby, Y.A., Ritland, K., 2012. Estimating sel?ng rates from reconstructed pedigrees using multilocus genotype data. Mol. Ecol. 21, 100-116. Waser, N., 1986. Flower constancy: definition, cause, and measurement. Am. Nat. 127, 593-603. Weis, A.E., Winterer, J., LeBuhn, G., et al., 2005. Phenological assortative mating in flowering plants: the nature and consequences of its frequency dependence. Evol. Ecol. Res. 7, 161-181. Whitehead, M.R., Lanfear, R., Karron, J.D., et al., 2018. Plant mating systems often vary widely among populations. Front. Ecol. Evol. 6, 38. Whittall, J.B., Hodges, S.A., 2007. Pollinator shifts drive increasingly long nectar spurs in columbine flowers. Nature 447, 706-709. Yang, J.Y., Hodges, S.A., 2010. Early inbreeding depression selects for high outcrossing rates in Aquilegia formosa and Aquilegia pubescens. Int. J. Plant Sci. 171, 860-871. Yuan, S., Zeng, G., Barrett, S.C.H., et al., 2023. Diverse mating consequences of the evolutionary breakdown of the sexual polymorphism heterostyly. Proc. Natl. Acad. Sci. U.S.A. 120, e2214492120. |
[1] | Zhi-Li Zhou, Yuan-Wen Duan, Yan Luo, Yong-Ping Yang, Zhi-Qiang Zhang. Cell number explains the intraspecific spur-length variation in an Aquilegia species [J]. Plant Diversity, 2019, 41(05): 307-314. |
Viewed | ||||||||||||||||||||||||||||||||||
Full text 0
|
|
|||||||||||||||||||||||||||||||||
Abstract 5
|
|
|||||||||||||||||||||||||||||||||