Plant Diversity ›› 2014, Vol. 36 ›› Issue (05): 611-621.DOI: 10.7677/ynzwyj201413243

• Articles • Previous Articles     Next Articles

Influence of Elevated CO2 Concentration and Nitrogen Source on Photosynthetic Traits in the Invasive Species Eupatorium adenophorum (Asteraceae)

OUYANG-Fen-1、2, ZHENG Guo-Wei-1, LI Wei-Qi-1、3   

  1. 1 Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 Biology Department, Honghe University, Mengzi 661100, China
  • Received:2013-12-24 Online:2014-09-25 Published:2014-03-25
  • Supported by:

    NSFC (31070262), West Light Foundation of the Chinese Academy of Sciences (CAS), Germplasm Bank of Wild Species


Increases in the concentration of atmospheric CO2 and plant invasion are two important problems that face humans worldwide. In some plants, exposure to a shortterm elevated concentration of CO2 (SE[CO2]) promotes photosynthesis, but the promotion of elevated [CO2] (E [CO2]) to photosynthesis might disappear after longterm treatment (socalled “CO2 acclimation”); this might result from the associated inhibition of nitrate assimilation. The present study investigated the physiological effects of shortterm (8 days) and longterm (40 days) exposure to E[CO2] when these were combined with different forms of inorganic N (full N; nitrate (NO3-)N) in the invasive species Eupatorium adenophorum. Exposure to E[CO2] increased the biomass of Eadenophorum, regardless of the duration of exposure to E[CO2] and the type of inorganic N that was supplied. E[CO2] could promote the photosynthesis of Eadenophorum seedlings fertilised with nondepleted Hoagland solutions (full N). For plants fertilised with NH4+depleted Hoagland solution (NO3-N), LE[CO2] treatment promoted the photosynthesis of Eadenop horum, but the promotion of photosynthesis by E[CO2] disappeared under SE[CO2] conditions. Photosynthetic pigments contents were determined to estimate potential changes in the photosynthetic capacity of Eadenophorum. For plants fertilised with nondepleted Hoagland solution, there were no significant differences in chlorophyll among the three [CO2] treatments, but the treatment of SE[CO2] increased the levels of chlorophyll in leaves. The apparent promotion of biomass accumulation and photosynthesis at LE[CO2] without a decrease in chlorophyll indicates that Eadenophorum might not acclimate to longterm exposure to E[CO2]. NH4+ depletion did not affect the capacity of LE[CO2] to promote the photosynthesis of Eadenophorum. Thus, considering some plants fertilised with NO3- acclimating to LE[CO2], Eadenophorum might be more competitive in areas where the soils are relatively poor in NH4+ as levels of atmospheric CO2 continue to rise.

Key words: Elevated CO2, Eadenophorum, Invasive plants, Photosynthesis acclimation, NO3- assimilation

CLC Number: