Adir N, Zer H, Sochat S et al., 2005. Photoinhibition—a historical perspective[A]. In: Govindjee et al. (eds.), Discoveries in Photosynthesis. Advances in Photosynthesis and Respiration[M]. Springer, Dordrecht
Allen DJ, Ratner K, Giller YE et al., 2000. An overnight chill induces a delayed inhibition of photosynthesis at midday in mango (Mangifera indica L) [J]. Journal of Experimental Botany, 51: 1893—1902
Allakhverdiev SI, Murata N, 2004. Environmental stress inhibits the synthesis de novo of proteins involved in the photodamagerepair cycle of photosystem II in Synechocystis sp. PCC 6803[J]. Biochimica et Biophysica Acta, 1657: 23—32
Aro EM, Virgin I, Andersson B, 1993. Photoinhibition of photosystem II. Inactivation, protein damage and turnover[J]. Biochimica et Biophysica Acta, 1143: 113—134
Asada K, 1999. The waterwater cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons[J]. Annuls Review in Plant Physiology, 50: 601—639
Ballottari M, Dall’Osto L, Morosinotto T et al., 2007. Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation[J]. Journal of Biological Chemistry, 282: 8947—8958
Barber J, Andersson B, 1992. Too much of a good thing: light can be bad for photosynthesis[J]. Trends in Biochemical Sciences, 17: 61—66
Cao KF, Guo YH, Cai ZQ, 2006. Photosynthesis and antioxidant enzyme activity in breadfruit, jackfruit and mangosteen in Southern Yunnan, China[J]. Journal of Horticultural Science and Biotechnology, 81: 168—172
Danon A, 2012. Environmentallyinduced oxidative stress and its signaling[A]. In: EatonRye JJ, Tripathy BC, Sharkey TD (eds.), Photosynthesis: Plastid Biology, Energy Conversion and Carbon Assimilation. Advances in Photosynthesis and Respiration[M]. Springer, Dordrecht
DemmigAdams B, 1990. Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin[J]. Biochimica et Biophysica Acta, 1020: 1—24
Elsheery N, Wilske B, Zhang JL et al., 2007. Seasonal variations in gas exchange and chlorophyll fluorescence in the leaves of five mango cultivars in southern Yunnan, China[J]. Journal of Horticultural Science and Biotechnology, 82: 855—862
Flexas J, Badger M, Chow WS et al., 1999. Analysis of the relative increase in photosynthetic O2 uptake when photosynthesis in grapevine leaves is inhibited following low night temperatures and/or water stress[J]. Plant Physiology, 121: 675—684
Feng YL, Cao KF, 2005. Photosynthesis and photoinhibition after night chilling in seedlings of two tropical tree species grown under three irradiances[J]. Photosynthetica, 43: 567—574
Genty B, Briantais JM, Baker NR, 1989. The relationship between the quantum yield of photosynthetic electrontransport and quenching of chlorophyll fluorescence[J]. Biochimica et Biophysica Acta, 990: 87—92
Gilmore AM, Shinkarev VP, Hazlett TL et al., 1998. Quantitative analysis of the effects of intrathylakoid pH and the xanthophyll cycle pigments on chlorophyll a fluorescence lifetime distributions and intensity in the thylakoids[J]. Biochemistry, 37: 13582—13593
Golbeck JH, 1987. Structure, function and organization of the Photosystem I reaction center complex[J]. Biochimica et Biophysica Acta, 895: 167—204
Golbeck JH, Bryant DA, 1991. Photosystem I[A]. In: Lee CP (ed.), Current Topics in Bioenergetics[M]. Academic Press, San Diego
Govindjee, 2004. Chlorophyll a fluorescence: A bit of basics and history[A]. In: Papageorgiou GC, Govindjee (eds.), Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration[M]. Springer, Dordrecht
Guo YH, Cao KF, 2004. Effect of night chilling on photosynthesis of two coffee species grown under different irradiances[J]. Journal of Horticultural Science and Biotechnology, 79: 713—716
Hakala M, Tuominen I, Keranen M et al., 2005. Evidence for the role of the oxygenevolving manganese complex in photoinhibition of photosystem II[J]. Biochimica et Biophysica Acta, 1706: 68—80
Hendrickson L, Furbank RT, Chow WS, 2004. A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence[J]. Photosynthesis Research, 82: 73—81
Hormaetxe K, Hernandez A, Becerril JM et al., 2004. Role of red carotenoids in photoprotection during winter acclimation in Buxus sempervirens leaves[J]. Plant Biology, 6: 325—332
Huang W, Zhang SB, Cao KF, 2010a. The different effects of chilling stress under moderate illumination on photosystem II compared with photosystem I and subsequent recovery in tropical tree species[J]. Photosynthesis Research, 103: 175—182
Huang W, Zhang SB, Cao KF, 2010b. Stimulation of cyclic electron flow during recovery after chillinginduced photoinhibition of PSII[J]. Plant and Cell Physiology, 51: 1922—1928
Huang W, Zhang SB, Cao KF, 2011. Cyclic electron flow plays an important role in photoprotection of tropical trees illuminated at temporal chilling temperature[J]. Plant and Cell Physiology, 52: 297—305
Huang W, Yang SJ, Zhang SB et al., 2012a. Cyclic electron flow plays an important role in photoprotection for the resurrection plant Paraboea rufescens under drought stress[J]. Planta, 235: 819—828
Huang W, Zhang SB, Cao KF, 2012b. Evidence for leaf fold to remedy the deficiency of physiological photoprotection for photosystem II[J]. Photosynthesis Research, 110: 185—191
Huang W, Fu PL, Jiang YJ et al., 2013. Differences in the responses of photosystem I and photosystem II of three tree species Cleistanthus sumatranus, Celtis philippensis and Pistacia weinmannifolia exposed to a prolonged drought in a tropical limestone forest[J]. Tree Physiol, 33: 221—220
Jiang YJ, 2008. Effect of low temperature in foggy and cool season on photosynthesis and activities of antioxidant enzymes in three tropical species[J]. Acta Botanica Yunnannica (云南植物研究), 28: 1675—1682
Johnson GN, 2011. Physiology of PSI cyclic electron transport in higher plants[J]. Biochimica et Biophysica Acta, 1807: 384—389
Joliot P, Jonhnson GN, 2011. Regulation of cyclic and linear electron flow in higher plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 108: 13317—13322
Klughammer C, Schreiber U, 1994. An improved method, using saturating light pulses, for the determination of photosystemI quantum yield via P700+absorbance changes at 830 nm[J]. Planta, 192: 261—268
Kornyeyev D, Logan BA, Payton PR et al., 2001. Enhanced photochemical light utilization and decreased chillinginduced photoinhibition of photosystem II in cotton overexpressing genes encoding chloroplasttargeted antioxidant enzymes[J]. Physiologia Plantarum, 113: 323—331
Kornyeyev D, Logan BA, Aleen RD et al., 2003a. Effect of chloroplastic overproduction of ascorbate peroxidase on photosynthesis and photoprotection in cotton leaves subjected to low temperature photoinhibition[J]. Plant Science, 165: 1033—1041
Kornyeyev D, Logan BA, Payton PR et al., 2003b. Elevated chloroplastic glutathione reductase activities decrease chillinginduced photoinhibition by increasing rates of photochemistry, but not thermal energy dissipation, in transgenic cotton[J]. Functional Plant Biology, 30: 101—110
Krivosheeva A, Tao DL, Ottander C et al., 1996. Cold acclimation and photoinhibition of photosynthesis in Scots pine[J]. Planta, 200: 296—305
Kramer DM, Johnson G, Kiirats O et al., 2004. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes[J]. Photosynthesis Research, 79: 209—218
Lichtenthaler HK, Wellburn AR, 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents[J]. Biochemical Society Transactions, 11: 591—592
Munekage Y, Hashimoto M, Miyake C et al., 2004. Cyclic electron ow around photosystem I is essential for photosynthesis[J]. Nature, 429: 579—582
Munekage Y, Hojo M, Meurer J et al., 2002. PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis[J]. Cell, 110: 361—371
Munekage Y, Genty B, Peltier G, 2008. Effect of PGR5 impairment on photosynthesis and growth in Arabidopsis thaliana[J]. Plant and Cell Physiology, 49: 1688—1698
Nishiyama Y, Allakhverdiev SI, Murata N, 2006. A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II[J]. Biochimica et Biophysica Acta, 1757: 742—749
Nishiyama Y, Allakhverdiev SI, Yamamoto H et al., 2004. Singlet oxygen inhibits the repair of photosystem II by suppressing the translation elongation of the D1 protein in Synechocystis sp. PCC 6803[J]. Biochemistry, 43: 11321—11330
Nishiyama Y, Yamamoto H, Allakhverdiev SI et al., 2001. Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery[J]. EMBO Journal, 20: 5587—5594
Nishiyama Y, Allakhverdiev SI, Murata N, 2005. Inhibition of the repair of photosystem II by oxidative stress in cyanobacteria[J]. Photosynthesis Research, 84: 1—7
Nishiyama Y, Allakhverdiev SI, Murata N, 2011. Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II[J]. Physiologia Plantarum, 142: 35—46
Niyogi KK, 1999. Photoprotection revisited: genetic and molecular approaches[J]. Annual Review of Plant Physiology, 50: 333—359
Niyogi KK, 2000. Safety values for photosynthesis[J]. Current Opinion in Plant Biology, 3: 455—460
Nuijs AM, Shuvalov A, van Gorkom HJ et al., 1986. Picosecond absorbance difference spectroscopy on the primary reactions and the antennaexcited states in photosystem I particles[J]. Biochimica et Biophysica Acta, 850: 310—318
Oguchi R, Terashima I, Kou J et al., 2011. Operation of dual mechanisms that both lead to photoinactivation of photosystem II in leaves by visible light[J]. Physiologia Plantarum, 142: 47—55
Ohnishi N, Allakhverdiev SI, Takahashi S et al., 2005. Twostep mechanism of photodamage to photosystem II: step one occurs at the oxygenevolving complex and step two occurs at the photochemical reaction center[J]. Biochemistry, 44: 8494—8499
Oxborough K, Baker NR, 1997. Resolving chlorophyll a uorescence images of photosynthetic efciency into photochemical and nonphotochemical componentscalculation of qP and Fv′/Fm′ without measuring Fo′[J]. Photosynthesis Research, 54: 135—142
Powles SB, 1984. Photoinhibition of photosynthesis induced by visible light[J]. Annual Review of Plant Physiology, 35: 15—44
Sainz M, Diaz P, Monza J et al., 2010. Heat stress results in loss of chloroplast Cu/Zn superoxide dismutase and increased damage to Photosystem II in combined droughtheat stressed Lotus japonicas[J]. Physiologia Plantarum, 140: 46—56
Shikanai T, 2007. Cyclic electron transport around photosystem I: genetic approaches[J]. Annual Review in Plant Physiology, 58: 199—217
Shuvalov VA, Nuijs AM, van Gorkom HJ et al., 1986. Picosecond absorbance changes upon selective excitation of the primary electron donor P700 in photosystem I[J]. Biochimica et Biophysica Acta, 850: 319—323
Sonoike K, 1996. Degradation of psa B gene product, the reaction center subunit of photosystem I, is caused during photoinhibition of photosystem I: possible involvement of active oxygen species[J]. Plant Science, 115: 157—164
Sonoike K, 2006. Photoinhibition and protection of photosystem I[A]. In: Golbeck JH (ed.), Photosystem I: the LightDriven Plastocyanin: Ferredoxin Oxidoreductase, Series Advances in Photosynthesis and Respiration[M]. Springer, Dordrecht
Sonoike K, 2011. Photoinhibition of photosystem I[J]. Physiologia Plantarum, 142: 56—64
Takahashi S, Milward SE, Fan DY et al., 2009. How does cyclic electron flow alleviate photoinhibition in Arabidopsis[J]. Plant Physiology, 149: 1560—1567
Verhoeven AS, Adams III WW, DemmigAdams B, 1999. The xanthophyll cycle and acclimation of Pinus ponderosa and Malva neglecta to winter stress[J]. Oecologia, 118: 277—287
Yamori W, Sakata N, Suzuki Y et al., 2011. Cyclic electron flow around photosystem I via chloroplast NAD (P) H dehydrogenase (NDH) complex performs a significant physiological role during photosynthesis and plant growth at low temperature in rice[J]. Plant Journal, 68: 966—976
Zhang SP, Scheller HV, 2004. Photoinhibition of photosystem I at chilling temperature and subsequent recovery in Arabidopsis[J]. Plant and Cell Physiology, 45: 1595—1602
Zhu JJ, Zhang JL, Liu HC et al., 2009. Photosynthesis, nonphotochemical pathways and activities of antioxidant enzymes in a resilient evergreen oak under different climatic conditions from a valleysavanna in Southwest China[J]. Physiologia Plantarum, 135: 67—72 |