AlWhaibi MH, 2011. Plant heatshock proteins: A mini review[J]. Journal of King Saud University, 23 (2): 139—150
Barua D, Downs CA, Heckathorn SA, 2003. Variation in chloroplast smallheatshock protein function is a major determinant of variation in thermotolerance of photosynthetic electron transport among ecotypes of Chenopodium album[J]. Functional Plant Biology, 30 (10): 1071—1079
Beck E, 1994. Cold tolerance in tropical alpine plant[A]. Tropical Alpine Environments: Plant Form and Function[M]. Cambridge University Press, 77—110
Bergonzi S, Albani MC, Loren van Themaat EV et al., 2013. Mechanisms of agedependent response to winter temperature in perennial flowering of Arabis alpina[J]. Science, 340 (6136): 1094—1097
Berry J, Bjorkman O, 1980. Photosynthetic response and adaptation to temperature in higher plants[J]. Annual Review of Plant Physiology, 31 (1): 491—543
Bohlenius H, Huang T, CharbonnelCampaa L et al., 2006. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees[J]. Science, 312 (5776): 1040—1043
Boorstein W, Ziegelhoffer T, Craig E, 1994. Molecular evolution of the HSP70 multigene family[J]. Journal of Molecular Evolution, 38 (1): 1—17
Braun V, Buchner O, Neuner G, 2002. Thermotolerance of photosystem 2 of three alpine plant species under field conditions[J]. Photosynthetica, 40 (4): 587—595
Bressan RA, Zhang C, Zhang H et al., 2001. Learning from the Arabidopsis experience. The next gene search paradigm[J]. Plant Physiology, 127 (4): 1354—1360
Chintalapati S, Kiran MD, Shivaji S, 2004. Role of membrane lipid fatty acids in cold adaptation[J]. Cellular and Molecular Biology, 50 (5): 631—642
DemmigAdams B, Adams III WW, Barker DH et al., 1996. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation[J]. Physiologia Plantarum, 98 (2): 253—264
Devasirvatham V, Tan DKY, Gaur PM et al., 2012. High temperature tolerance in chickpea and its implications for plant improvement[J]. Crop & Pasture Science, 63 (5): 419—428
Fan L, Zheng S, Wang X, 1997. Antisense suppression of phospholipase D alpha retards abscisic acid and ethylenepromoted senescence of postharvest Arabidopsis leaves[J]. The Plant Cell, 9 (12): 2183—2196
Gao K, Qiu B, Xia J et al., 1998. Light dependency of the photosynthetic recovery of Nostoc flagelliforme[J]. Journal of Applied Phycology, 10 (1): 51—53
Gauslaa Y, 1984. Heatresistance and energy budget in different scandinavian plants[J]. Holarctic Ecology, 7 (1): 1—78
Haldimann P, Feller U, 2004. Inhibition of photosynthesis by high temperature in oak (Quercus pubescens L.) leaves grown under natural conditions closely correlates with a reversible heatdependent reduction of the activation state of ribulose1, 5bisphosphate carboxylase/oxygenase[J]. Plant Cell & Environment, 27 (9): 1169—1183
Havaux M, 1998. Carotenoids as membrane stabilizers in chloroplasts[J]. Trends in Plant Science, 3 (4): 147—151
Hendrickson L, Furbank RT, Chow WS, 2004. A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence[J]. Photosynthesis Research, 82 (1): 73—81
Krner C, 2003. Alpine plant life[A]. Functional Plant Ecology of High Mountain Ecosystem[M]. Springer Verlag, NewYork, USA
Krner C, Cochrane P, 1983. Influence of plant physiognomy on leaf temperature on clear midsummer days in the Snowy Mountains, southeastern Australia[J]. Acta Oecologia/Oecologia Plantarum, 4 : 117—124
Krner C, Larcher W, 1988. Plant life in cold climates[A]. Plants and Temperature[M]. Cambridge: Comp Biol Ltd, 25—57
Koch M, Bishop J, MitchellOlds T, 1999. Molecular systematics and evolution of Arabidopsis and Arabis[J]. Plant Biology, 1 (5): 529—537
Koch MA, Kiefer C, Ehrich D et al., 2006. Three times out of asia minor: The phylogeography of Arabis alpina l. (Brassicaceae) [J]. Molecular Ecology, 15 (3): 825—839
Kramer DM, Johnson G, Kiirats O et al., 2004. New fluorescence parameters for the determination of Q(A) redox state and excitation energy fluxes[J]. Photosynthesis Research, 79 (2): 209—218
Hong SW, Lee U, Vierling E, 2003. Arabidopsis hot mutants define multiple functions required for acclimation to high temperatures[J]. Plant Physiology, 132 (2): 757—767
Larkindale J, Hall JD, Knight MR et al., 2005. Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance[J]. Plant Physiology, 138 (2): 882—897
Latijnhouwers M, Xu XM, Mller SG, 2010. Arabidopsis stromal 70kDa heat shock proteins are essential for chloroplast development[J]. Planta, 232 (3): 567—578
Li S, Fu Q, Chen L et al., 2011. Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance[J]. Planta, 233 (6): 1237—1252
Luo HB, Ma L, Xi HF et al., 2011. Photosynthetic responses to heat treatments at different temperatures and following recovery in grapevine (Vitis amurensis L.) leaves[J]. PLoS ONE, 6 (8): e23033
Marquez EJ, Rada F, Farinas MR, 2006. Freezing tolerance in grasses along an altitudinal gradient in the Venezuelan Andes[J]. Oecologia, 150 (3): 393—397
Martin M, Gavazov K, Korner C et al., 2010. Reduced early growing season freezing resistance in alpine treeline plants under elevated atmospheric CO2[J]. Global Change Biology, 16 (3): 1057—1070
Maxwell K, Johnson GN, 2000. Chlorophyll fluorescencea practical guide[J]. Journal of Experimental Botany, 51 (345): 659—668
Meriga B, Krishna Reddy B, Rajender Rao K et al., 2004. Aluminiuminduced production of oxygen radicals, lipid peroxidation and DNA damage in seedlings of rice (Oryza sativa) [J]. Journal of Plant Physiology, 161 (1): 63—68
Miquel M, Browse J, 1992. Arabidopsis mutants deficient in polyunsaturated fatty acid synthesis. Biochemical and genetic characterization of a plant oleoylphosphatidylcholine desaturase[J]. Journal of Biological Chemistry, 267 (3): 1502—1509
Mishra RK, Singhal GS, 1992. Function of photosynthetic apparatus of intact wheat leaves under high light and heat stress and its relationship with peroxidation of thylakoid lipids[J]. Plant Physiology, 98 (1): 1—6
Murakami Y, Tsuyama M, Kobayashi Y et al., 2000. Trienoic fatty acids and plant tolerance of high temperature[J]. Science, 287 (5452): 476—479
NietoSotelo J, Martínez LM, Ponce G et al., 2002. Maize HSP101 plays important roles in both induced and basal thermotolerance and primary root growth[J]. The Plant Cell, 14 (7): 1621—1633
Ortiz CA, Bravo LA, Pinto M et al., 1995. Physiological and molecular responses of Prosopis chilensis under field and simulation conditions[J]. Phytochemistry, 40 (5): 1375—1382
Parsell DA, Lindquist S, 1993. The function of heatshock proteins in stress tolerance: degradation and reactivation of damaged proteins[J]. Annual Review of Genetics, 27: 437—496
Petkova V, Denev ID, Cholakov D et al., 2007. Field screening for heat tolerant common bean cultivars (Phaseolus vulgaris L.) by measuring of chlorophyll fluorescence induction parameters[J]. Scientia Horticulturae, 111 (2): 101—106
Petkova V ID, Stefanov D, 2009. Resistance to high temperature stress of various bean (Phaseolus vulgaris L.) cultivars and lines[J]. General and Applied Plant Physiology, 35 (34): 117—121
Queitsch C, Hong SW, Vierling E et al., 2000. Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis[J]. The Plant Cell, 12 (4): 479—492
Rohácˇek K, 2002. Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships[J]. Photosynthetica, 40 (1): 13—29
Routaboul JM, Skidmore C, Wallis JG et al., 2012. Arabidopsis mutants reveal that short and longterm thermotolerance have different requirements for trienoic fatty acids[J]. Journal of Experimental Botany, 63 (3): 1435—1443
Sairam RK, Srivastava GC, Saxena DC, 2000. Increased antioxidant activity under elevated temperatures: A mechanism of heat stress tolerance in wheat genotypes[J]. Biologia Plantarum, 43 (2): 245—251
Salisbury FB, Spomer GG, 1964. Leaf temperatures of alpine plants in the field[J]. Planta, 60 (5): 497—505
Schffl F, Prandl R, Reindl A, 1999. Molecular responses to heat stress[A]. Molecular Responses to Cold, Drought, Heat and Salt Stress in Higher Plants[M]. RG. Landes Co, Austin, Texas, 81—98
Sharkey TD, Zhang R, 2010. High temperature effects on electron and proton circuits of photosynthesis[J]. Journal of Integrative Plant Biology, 52 (8): 712—722
Song L, Chow WS, Sun L et al., 2010. Acclimation of photosystem II to high temperature in two Wedelia species from different geographical origins: implications for biological invasions upon global warming[J]. Journal of Experimental Botany, 61 (14): 4087—4096
Sorger PK, 1991. Heat shock factor and the heat shock response[J]. Cell, 65 (3): 363—366
Tsvetkova NM, Horvath I, Torok Z et al., 2002. Small heatshock proteins regulate membrane lipid polymorphism[J]. Proceedings of the National Academy of Sciences of the United States of America, 99 (21): 13504—13509
Turner H, 1958. Maximaltemperaturen oberflchennaher Bodenschichten an der alpinen[A]. Wetter Leben[M]. 10: 1—12
Wahid A, Gelani S, Ashraf M et al., 2007. Heat tolerance in plants: An overview[J]. Environmental and Experimental Botany, 61 (3): 199—223 |