Plant Diversity ›› 2020, Vol. 42 ›› Issue (06): 427-433.DOI: 10.1016/j.pld.2020.12.010
• Articles • Previous Articles Next Articles
Wei Gua,b, Xiaojiang Haoa,b,e, Zehuan Wangc, Jiayu Zhanga,b, Liejun Huanga,b, Shengji Peid
Received:
2020-05-15
Revised:
2020-12-21
Online:
2020-12-25
Published:
2021-03-03
Contact:
Shengji Pei
Supported by:
Wei Gu, Xiaojiang Hao, Zehuan Wang, Jiayu Zhang, Liejun Huang, Shengji Pei. Ethnobotanical study on medicinal plants from the Dragon Boat Festival herbal markets of Qianxinan, southwestern Guizhou, China[J]. Plant Diversity, 2020, 42(06): 427-433.
Add to citation manager EndNote|Ris|BibTeX
酶 Enzyme | 缩写 Abbreviation | 功能 Function | 底物 Substrate |
---|---|---|---|
β-葡萄糖苷酶 β-glucosidase | βG | 分解易降解碳 Decomposition of labile carbon | 4-甲基伞形酮-β-D-葡萄糖苷 4-methylumbelliferyl-β-D-glucoside |
纤维素水解酶 Cellulose hydrolysis | CBH | 分解易降解碳 Decomposition of labile carbon | 4-甲基伞形酮-β-D-纤维素二糖苷 4-methylumbelliferyl-β-D-cellobioside |
β-N-乙酰氨基葡萄糖苷酶 β-N-acetylglucosaminidase | NAG | 分解氮 Hydrolyze nitrogen | 4-甲基伞形酮-2-乙酰氨基-2-脱氧-β-D-吡喃葡萄糖苷 4-methylumbelliferyl-N-acetyl-β-D-glucosaminide |
多酚氧化酶 Phenol oxidase | PHO | 分解难降解碳 Decomposition of recalcitrant carbon | 二羟基苯 L-dihydroxyphenylalanine |
过氧化物酶 Peroxidase | PEO | 分解难降解碳 Decomposition of recalcitrant carbon | 二羟基苯 L-dihydroxyphenylalanine |
Table 1 The abbreviations, function and substrates of soil enzyme
酶 Enzyme | 缩写 Abbreviation | 功能 Function | 底物 Substrate |
---|---|---|---|
β-葡萄糖苷酶 β-glucosidase | βG | 分解易降解碳 Decomposition of labile carbon | 4-甲基伞形酮-β-D-葡萄糖苷 4-methylumbelliferyl-β-D-glucoside |
纤维素水解酶 Cellulose hydrolysis | CBH | 分解易降解碳 Decomposition of labile carbon | 4-甲基伞形酮-β-D-纤维素二糖苷 4-methylumbelliferyl-β-D-cellobioside |
β-N-乙酰氨基葡萄糖苷酶 β-N-acetylglucosaminidase | NAG | 分解氮 Hydrolyze nitrogen | 4-甲基伞形酮-2-乙酰氨基-2-脱氧-β-D-吡喃葡萄糖苷 4-methylumbelliferyl-N-acetyl-β-D-glucosaminide |
多酚氧化酶 Phenol oxidase | PHO | 分解难降解碳 Decomposition of recalcitrant carbon | 二羟基苯 L-dihydroxyphenylalanine |
过氧化物酶 Peroxidase | PEO | 分解难降解碳 Decomposition of recalcitrant carbon | 二羟基苯 L-dihydroxyphenylalanine |
林分类型 Forest type | pH | 含水率 Moisture (%) | 土壤总有机碳 Total soil organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | C:N | NH4+-N (mg·kg-1) | NO3--N (mg·kg-1) | 可溶性有机碳 Dissolved organic carbon (mg·kg-1) | 可溶性有机氮 Dissolved organic nitrogen (mg·kg-1) | |
---|---|---|---|---|---|---|---|---|---|---|
SF | 4.72 ± 0.18a | 27.24 ± 1.42b | 41.69 ± 1.46a | 2.43 ± 0.11b | 17.20 ± 0.50a | 80.17 ± 5.10a | 7.67 ± 1.93a | 87.47 ± 29.59a | 8.80 ± 2.28a | |
AR | 4.79 ± 0.10a | 35.02 ± 0.56a | 45.82 ± 5.64a | 2.89 ± 0.16a | 15.80 ± 1.03a | 92.40 ± 3.76a | 4.83 ± 2.80a | 76.98 ± 12.55a | 6.68 ± 2.28a | |
PM | 4.63 ± 0.06a | 28.79 ± 2.49b | 25.16 ± 0.52b | 1.83 ± 0.04c | 13.73 ± 0.59b | 54.47 ± 11.28b | 6.50 ± 0.24a | 26.55 ± 6.44b | 5.84 ± 1.46a |
Table 2 Main soil physical and chemical properties and soil available nutrients in different forest types (mean ± SD, n = 3)
林分类型 Forest type | pH | 含水率 Moisture (%) | 土壤总有机碳 Total soil organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | C:N | NH4+-N (mg·kg-1) | NO3--N (mg·kg-1) | 可溶性有机碳 Dissolved organic carbon (mg·kg-1) | 可溶性有机氮 Dissolved organic nitrogen (mg·kg-1) | |
---|---|---|---|---|---|---|---|---|---|---|
SF | 4.72 ± 0.18a | 27.24 ± 1.42b | 41.69 ± 1.46a | 2.43 ± 0.11b | 17.20 ± 0.50a | 80.17 ± 5.10a | 7.67 ± 1.93a | 87.47 ± 29.59a | 8.80 ± 2.28a | |
AR | 4.79 ± 0.10a | 35.02 ± 0.56a | 45.82 ± 5.64a | 2.89 ± 0.16a | 15.80 ± 1.03a | 92.40 ± 3.76a | 4.83 ± 2.80a | 76.98 ± 12.55a | 6.68 ± 2.28a | |
PM | 4.63 ± 0.06a | 28.79 ± 2.49b | 25.16 ± 0.52b | 1.83 ± 0.04c | 13.73 ± 0.59b | 54.47 ± 11.28b | 6.50 ± 0.24a | 26.55 ± 6.44b | 5.84 ± 1.46a |
林分类型 Forest type | βG (nmol·g-1·h-1) | CBH (nmol·g-1·h-1) | NAG (nmol·g-1·h-1) | PHO (μmol·g-1·h-1) | PEO (μmol·g-1·h-1) |
---|---|---|---|---|---|
SF | 38.93 ± 7.44a | 1.41 ± 0.29b | 36.42 ± 7.68b | 0.53 ± 0.37b | 14.61 ± 3.86a |
AR | 36.93 ± 6.72a | 3.49 ± 0.59a | 76.98 ± 20.43a | 0.25 ± 0.11b | 13.48 ± 3.74a |
PM | 23.86 ± 5.12b | 0.48 ± 0.16c | 38.94 ± 8.09b | 3.92 ± 0.52a | 20.70 ± 3.83a |
Table 3 Soil enzyme activities in different forest types (mean ± SD, n = 3)
林分类型 Forest type | βG (nmol·g-1·h-1) | CBH (nmol·g-1·h-1) | NAG (nmol·g-1·h-1) | PHO (μmol·g-1·h-1) | PEO (μmol·g-1·h-1) |
---|---|---|---|---|---|
SF | 38.93 ± 7.44a | 1.41 ± 0.29b | 36.42 ± 7.68b | 0.53 ± 0.37b | 14.61 ± 3.86a |
AR | 36.93 ± 6.72a | 3.49 ± 0.59a | 76.98 ± 20.43a | 0.25 ± 0.11b | 13.48 ± 3.74a |
PM | 23.86 ± 5.12b | 0.48 ± 0.16c | 38.94 ± 8.09b | 3.92 ± 0.52a | 20.70 ± 3.83a |
1 |
A’Bear AD , Jones TH , Kandeler E ( 2014). Interactive effects of temperature and soil moisture on fungal-mediated wood decomposition and extracellular enzyme activity. Soil Biology and Biochemistry, 70, 151- 158.
DOI URL |
2 |
Akagi J , Ádám Z , Bastida F ( 2007). Quantity and spectroscopic properties of soil dissolved organic matter (DOM) as a function of soil sample treatments: Air-drying and pre-incubation. Chemosphere, 69, 1040- 1046.
DOI URL PMID |
3 |
Allison SD , Vitousek PM ( 2005). Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biology and Biochemistry, 37, 937- 944.
DOI URL |
4 |
Allison VJ , Condron LM , Peltzer DA ( 2007). Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand. Soil Biology and Biochemistry, 39, 1770- 1781.
DOI URL |
5 |
Bending GD , Turner MK , Jones JE ( 2002). Interactions between crop residue and soil organic matter quality and the functional diversity of soil microbial communities. Soil Biology and Biochemistry, 34, 1073- 1082.
DOI URL |
6 |
Bu XL , Wang LM , Ma WB ( 2010). Spectroscopic characterization of hot-water extractable organic matter from soils under four different vegetation types along an elevation gradient in the Wuyi Mountains. Geoderma, 159, 139- 146.
DOI URL |
7 |
Burns RG ( 1982). Enzyme activity in soil-location and a possible role in microbial ecology. Soil Biology and Biochemistry, 14, 423- 427.
DOI URL |
8 |
Burns RG , Deforest JL , Marxsen J ( 2013). Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biology and Biochemistry, 58, 216- 234.
DOI URL |
28 |
Meng Y , Xue JY , Sha LQ , Tang JW ( 2001). Variations of soil NH4 +-N, NO3 --N and N mineralization under different forests in Xishuangbanna, Southwest China. Acta Phytoecologica Sinica, 25, 99- 104.
DOI URL |
[ 孟盈, 薛敬意, 沙丽清, 唐建维 ( 2001). 西双版纳不同热带森林下土壤铵态氮和硝态氮动态研究. 植物生态学报, 25, 99- 104.]
DOI URL |
|
29 | Mo JM , Xue JH , Fang YT ( 2004). Litter decomposition and its responses to simulated N deposition for the major plants of Dinghushan forests in subtropical China. Acta Ecologica Sinica, 24, 1413- 1420. |
[ 莫江明, 薛璟花, 方运霆 ( 2004). 鼎湖山主要森林植物凋落物分解及其对N沉降的响应. 生态学报, 24, 1413- 1420.] | |
30 |
Parfitt RL , Ross DJ , Coomes DA ( 2005). N and P in New Zealand soil chronosequences and relationships with foliar N and P. Biogeochemistry, 75, 305- 328.
DOI URL |
31 |
Saadi I , Borisover M , Armon R , Laor Y ( 2006). Monitoring of effluent DOM biodegradation using fluorescence, UV and DOC measurements. Chemosphere, 63, 530- 539.
DOI URL PMID |
32 |
Saiya-Cork KR , Sinsabaugh RL , Zak DR ( 2002). The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology and Biochemistry, 34, 1309- 1315.
DOI URL |
33 |
Sardans J , Peñuelas J ( 2005). Drought decreases soil enzyme activity in a Mediterranean Quercus ilex L. forest. Soil Biology and Biochemistry, 37, 455- 461.
DOI URL |
34 |
Sedjo RA ( 1992). Temperate forest ecosystems in the global carbon cycle. AMBIO, 21( 4), 274- 277.
DOI URL |
35 |
Sinsabaugh RL ( 2010). Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biology and Biochemistry, 42, 391- 404.
DOI URL |
27 | [ 刘翥, 杨玉盛, 朱锦懋, 司友涛, 谢锦升, 杨智杰 ( 2014). 中亚热带2种经济林土壤可溶性有机质数量与光谱学特征比较. 水土保持学报, 28( 5), 170- 175.] |
Liu Z , Yang YS , Zhu JM , Si YT , Xie JS , Yang ZJ ( 2014). Comparative study on quantities and spectroscopic characteristics of soil dissolved organic matter between two economic forests in subtropical China. Journal of Soil & Water Conservation, 28( 5), 170- 175. | |
26 |
Lu X , Gilliam FS , Yu G , Li L ( 2013). Long-term nitrogen addition decreases carbon leaching in nitrogen-rich forest ecosystems. Biogeosciences Discussions, 10, 3931- 3941.
DOI URL |
25 |
[ 刘捷豹, 陈光水, 郭剑芬, 杨智杰, 李一清, 林成芳, 杨玉盛 ( 2017). 森林土壤酶对环境变化的响应研究进展. 生态学报, 37, 110- 117.]
DOI URL |
Liu JB , Chen GS , Guo JF , Yang ZJ , Li YQ , Lin CF , Yang YS ( 2017). Advances in research on the responses of forest soil enzymes to environmental change. Acta Ecologica Sinica, 37, 110- 117.
DOI URL |
|
24 |
Kuzyakov Y , Xu X ( 2013). Competition between roots and microorganisms for nitrogen: Mechanisms and ecological relevance. New Phytologist, 198, 656- 669.
DOI URL PMID |
23 |
Knicker H , Lüdemann HD , Haider K ( 1981). Incorporation studies of NH4 + during incubation of organic residues by l5N-CPMAS-NMR-spectroscopy. European Journal of Soil Science, 48, 431- 441.
DOI URL |
22 |
Keeney DR ( 1980). Prediction of soil nitrogen availability in forest ecosystems: A literature review. Forest Science, 26, 159- 171.
DOI URL |
21 | [ 康根丽, 杨玉盛, 司友涛 ( 2014b). 米槠人促更新林与杉木人工林叶片及凋落物溶解性有机物的数量和光谱学特征. 生态学报, 34, 1946- 1955.] |
Kang GL , Yang YS , Si YT ( 2014b). Quantities and spectral characteristics of DOM released from leaf and litterfall in Castanopsis carlesii forest and Cunninghamia lanceolata plantation. Acta Ecologica Sinica, 34, 1946- 1955. | |
20 |
[ 康根丽, 杨玉盛, 司友涛 ( 2014a). 马尾松与芒萁鲜叶及凋落物水溶性有机物的溶解特征和光谱学特征. 热带亚热带植物学报, 22, 357- 366.]
DOI URL |
Kang GL , Yang YS , Si YT ( 2014a). Soluble and spectral characteristics of DOM in leaching solution from leaves and litter-fall of Pinus massoniana and Dicranopteris dichotoma. Journal of Tropical and Subtropical Botany, 22, 357- 366.
DOI URL |
|
19 |
Kalbitz K , Geyer W , Geyer S ( 1999). Spectroscopic properties of dissolved humic substances—A reflection of land use history in a fen area. Biogeochemistry, 47, 219- 238.
DOI URL |
18 |
Jobbágy EG , Jackson RB ( 2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10, 423- 436.
DOI URL |
17 |
Jian S , Li J , Chen J ( 2016). Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis. Soil Biology and Biochemistry, 101, 32- 43.
DOI URL |
16 | Houghton RA ( 2007). Balancing the global carbon budget. Annual Review of Earth & Planetary Sciences, 35, 313- 347. |
15 | Hogberg M , Hogberg P , Myrold D ( 2007). Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three? Oecologia, 150, 590- 601. |
14 | [ 葛晓改, 肖文发, 曾立雄 ( 2012). 三峡库区不同林龄马尾松土壤养分与酶活性的关系. 应用生态学报, 23, 445- 451.] |
Ge XG , Xiao WF , Zeng LX ( 2012). Relationships between soil nutrient contents and soil enzyme activities in Pinus massoniana stands with different ages in Three Gorges Reservoir Area. Chinese Journal of Applied Ecology, 23, 445- 451. | |
13 |
Frankenberger WT , Dick WA ( 1983). Relationships between enzyme activities and microbial growth and activity indices in soil. Soil Science Society of America Journal, 47, 945- 951.
DOI URL |
12 |
Debosz K , Rasmussen PH , Pedersen AR ( 1999). Temporal variations in microbial biomass C and cellulolytic enzyme activity in arable soils: Effects of organic matter input. Applied Soil Ecology, 13, 209- 218.
DOI URL |
11 |
Currie WS , Aber JD , Mcdowell WH , Boone RD , Magill AH ( 1996). Vertical transport of dissolved organic C and N under long-term N amendments in pine and hardwood forests. Biogeochemistry, 35, 471- 505.
DOI URL |
10 |
Condron LM , Tiessen H , Turner BL ( 2005). Interactions of organic phosphorus in terrestrial ecosystems. Uspekhi Mat Nauk, 38, 205- 206.
DOI URL |
9 |
Camino-Serrano M , Gielen B , Luyssaert S ( 2014). Linking variability in soil solution dissolved organic carbon to climate, soil type, and vegetation type. Global Biogeochemical Cycles, 28, 497- 509.
DOI URL |
36 |
Su T , Si MR , Wang CH ( 2005). Effects of pretreatment, shaking and conserving method and extracting solution on results for soil mineral nitrogen. Journal of Agro-Environment Science, 24, 1238- 1242.
DOI URL |
[ 苏涛, 司美茹, 王朝辉 ( 2005). 土壤矿质氮分析方法的影响因素研究. 农业环境科学学报, 24, 1238- 1242.]
DOI URL |
|
37 |
Taylor JP , Wilson B , Mills MS ( 2002). Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques. Soil Biology and Biochemistry, 34, 387- 401.
DOI URL |
38 |
Waldrop MP , Firestone MK ( 2004). Microbial community utilization of recalcitrant and simple carbon compounds: Impact of oak-woodland plant communities. Oecologia, 138, 275- 284.
DOI URL PMID |
39 |
Wan JJ , Guo JF , Ji SR ( 2016). Effects of dissolved organic matter input on soil CO2 emission and microbial community composition in a subtropical forest. Scientia Silvae Sinicae, 52( 2), 106- 113.
DOI URL |
[ 万菁娟, 郭剑芬, 纪淑蓉 ( 2016). 可溶性有机物输入对亚热带森林土壤CO2排放及微生物群落的影响. 林业科学, 52( 2), 106- 113.]
DOI URL |
|
40 | Wan XH , Huang ZQ , He ZM ( 2014). Effects of tree species transfer on soil dissolved organic matter pools in a reforested Chinese fir (Cunninghamia lanceolata) woodland. Chinese Journal of Applied Ecology, 25, 12- 18. |
[ 万晓华, 黄志群, 何宗明 ( 2014). 杉木采伐迹地造林树种转变对土壤可溶性有机质的影响. 应用生态学报, 25, 12- 18.] | |
41 | Wang CY , Zhou JB , Xia ZM ( 2011). Effects of mixed plant residues from the loess plateau on microbial biomass carbon and nitrogen in soil. Acta Ecologica Sinica, 31, 2139- 2147. |
[ 王春阳, 周建斌, 夏志敏 ( 2011). 黄土高原区不同植物凋落物搭配对土壤微生物量碳、氮的影响. 生态学报, 31, 2139- 2147.] | |
42 | Wu BB , Guo JF , Wu JJ ( 2014). Effects of logging residues on surface soil biochemical properties and enzymatic activity. Acta Ecologica Sinica, 34, 1645- 1653. |
[ 吴波波, 郭剑芬, 吴君君 ( 2014). 采伐剩余物对林地表层土壤生化特性和酶活性的影响. 生态学报, 34, 1645- 1653.] | |
43 |
Wu JS , Jiang PK , Chang SX ( 2010). Dissolved soil organic carbon and nitrogen were affected by conversion of native forests to plantations in subtropical China. Canadian Journal of Soil Science, 90, 27- 36.
DOI URL |
44 |
Xu C , Lin CF , Liu XF , Xiong DC , Lin WS , Chen SD , Xie JS , Yang YS ( 2017). Effects of forest conversion on concentrations and fluxes of dissolved organic carbon in runoff. Acta Ecologica Sinica, 37, 84- 92.
DOI URL |
[ 胥超, 林成芳, 刘小飞, 熊德成, 林伟盛, 陈仕东, 谢锦升, 杨玉盛 ( 2017). 森林类型更替对地表径流可溶性有机碳输出浓度和通量的影响. 生态学报, 37, 84- 92.]
DOI URL |
|
45 |
Yang WQ , Wang KY ( 2004). Advances in forest soil enzymology. Scientia Silvae Sinicae, 40( 2), 152- 159.
DOI |
[ 杨万勤, 王开运 ( 2004). 森林土壤酶的研究进展. 林业科学, 40( 2), 152- 159.]
DOI |
|
46 |
Zhang WP , Si XL , Wang WY , Gao TP , Xu DH ( 2016). Effects of short-term nitrogen and silicon addition on above-ground biomass and biodiversity of alpine meadow of the Qinghai-Tibetan Plateau, China. Pratacultural Science, 33, 38- 45.
DOI URL |
[ 张文鹏, 司晓林, 王文银, 高天鹏, 徐当会 ( 2016). 氮硅添加对高寒草甸生物量和多样性的影响——以青藏高原为例. 草业科学, 33, 38- 45.]
DOI URL |
|
47 |
Zhao HK , Ma Z , Zhang CH , Lei ZL , Yao BQ , Zhou HK ( 2016). The reproductive allocation of Avena sativa under different planting densities and nitrogen addition treatments. Pratacultural Science, 33, 249- 258.
DOI URL |
[ 赵宏魁, 马真, 张春辉, 雷占兰, 姚步青, 周华坤 ( 2016). 种植密度和施氮水平对燕麦生物量分配的影响. 草业科学, 33, 249- 258.]
DOI URL |
|
48 |
Zhao JS , Zhang XD , Yuan X ( 2003). Characteristics and environmental significance of soil dissolved organic matter. Chinese Journal of Applied Ecology, 14, 126- 130.
URL PMID |
49 |
Zsolnay A , Baigar E , Jimenez M ( 1999). Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere, 38, 45- 50.
DOI URL PMID |
[1] | Jun Yang, Jifeng Luo, Qiliang Gan, Leiyu Ke, Fengming Zhang, Hairu Guo, Fuwei Zhao, Yuehu Wang. An ethnobotanical study of forage plants in Zhuxi County in the Qinba mountainous area of central China [J]. Plant Diversity, 2021, 43(03): 239-247. |
[2] | Huifu Zhuang, Chen Wang, Yanan Wang, Tao Jin, Rong Huang, Zihong Lin, Yuhua Wang. Native useful vascular plants of China: A checklist and use patterns [J]. Plant Diversity, 2021, 43(02): 134-141. |
[3] | Yi Gou, Zhennan Li, Ruyan Fan, Zuchuan Qiu, Lu Wang, Chen Wang, Yuhua Wang. Ethnobotanical survey of plants traditionally used against hematophagous invertebrates by ethnic groups in the mountainous area of Xishuangbanna, Southwest China [J]. Plant Diversity, 2020, 42(06): 415-426. |
[4] | Yanqiang Zhao, Zexing Yang, Bayi Lang, Manfred Shao, Wu Meng, Dayuan Xue, Lu Gao, Lixin Yang. Skincare plants of the Naxi of NW Yunnan, China [J]. Plant Diversity, 2020, 42(06): 473-478. |
[5] | GENG Yan-Fei-, Yang-Ya-, ZHANG Yu-, ZHANG Ling-Ling-, WANG Yu-Hua. Research Development of Food Plant Ethnobotany—Bibliometric and Mapping Knowledge Domains Analysis Based on Web of Science [J]. Plant Diversity, 2015, 37(4): 479-490. |
[6] | WANG Chen, ZHANG Ling-Ling, WANG Yu-Hua. Ethnobotanical Survey on Traditional Knowledge of Hodgsonia macrocarpa, Xishuangbanna, SW China [J]. Plant Diversity, 2015, 37(2): 209-213. |
[7] | Mametjan tursun, Aysajan abdusalam, Tursungul tohti, Nejiwulla kasim, Merhaba tayir. Plant Traditional Culture of Populus euphratica and Populus pruinosa of Uyghurs Folk ——A Case Study in Xinjiang Lopnur [J]. Plant Diversity, 2014, 36(05): 675-682. |
[8] | WANG Jing. Plants among Yi People’s Traditional Folk Customs and Their Cultural Significance in Liangshan Yi Autonomous Prefecture, Sichuan [J]. Plant Diversity, 2014, 36(04): 537-544. |
[9] | ZHAO Fu-Wei, YAO Yao, TANG Jun-Dun, XIE Zhen-Guo, YANG Sheng-Guo, YU Yong-Fu, WU Jian-Yong, ZHOU Jiang-Ju, ZHANG Shi-Ling, LI Ping, YANG Shao-Jun, LEI Qi-Yi, XUE Da-Yuan. Plants in Starter Culture for Brewing Traditional Liquor of Miao Ethnic Group in Leigongshan Mountain, Guizhou [J]. Plant Diversity, 2014, 36(02): 261-266. |
[10] | GU Wei, YANG Jun, YANG Fu-Mei, SUN Qian-Yun, WANG Yue-Hu, LONG Chun-Lin. A Preliminary Study of Traditional, Wild Medicinal, Edible Plants in Xishuangbanna, Yunnan, China [J]. Plant Diversity, 2014, 36(01): 99-108. |
[11] | WANG Li-, WANG Yu-Hua. The Status and Characteristics of Traditional Medicine Markets in Dali Prefecture [J]. Plant Diversity, 2013, 35(4): 453-460. |
[12] | PEI Sheng-Ji. Ethnobotany and the Sustainable Use of Biodiversity [J]. Plant Diversity, 2013, 35(4): 401-406. |
[13] | MAN Liang. Mongolian Traditional Sustainable Utilization Knowledge of Poisonous Ligneous Plants in the Ordos Grassland, China [J]. Plant Diversity, 2013, 35(2): 202-208. |
[14] | HA Shi-Ba-Gen-, YE Ru-Han-, ZIAO Hui. Study on Traditional Knowledge of Wild Edible Plants Used by the Mongolians in Xilingol Typical Steppe Area* [J]. Plant Diversity, 2011, 33(2): 239-246. |
[15] | Manliang, , ZHANG Xin-Shi, , Khasbagan, Erdemtuu. Study on the Mongolian Traditional Knowledge of Wild Edible Plants in Ordos Plateau [J]. Plant Diversity, 2007, 29(05): 575-585. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||