Plant Diversity ›› 2021, Vol. 43 ›› Issue (02): 111-116.DOI: 10.1016/j.pld.2020.08.003
• Articles • Previous Articles Next Articles
Juan Yuea,b, Rong Lia
Received:
2020-03-12
Revised:
2020-08-13
Online:
2021-04-25
Published:
2021-05-20
Contact:
Rong Li
Supported by:
Juan Yue, Rong Li. Phylogenetic relatedness of woody angiosperm assemblages and its environmental determinants along a subtropical elevational gradient in China[J]. Plant Diversity, 2021, 43(02): 111-116.
Add to citation manager EndNote|Ris|BibTeX
Bryant, J.A., Lamanna, C., Morion, H., et al., 2008. Microbes on mountainsides:contrasting elevational patterns of bacterial and plant diversity. Proc. Natl. Acad.Sci. U. S. A. 105, 11505-11511. Cardillo, M., 2011. Phylogenetic structure of mammal assemblages at large geographical scales:linking phylogenetic community ecology with macroecology. Philos. Trans. R. Soc. B-Biol. Sci. 366, 2545-2553. Cavender-Bares, J., Kozak, K.H., Fine, P.V., et al., 2009. The merging of community ecology and phylogenetic biology. Ecol. Lett. 12, 693-715. Chaplin, G., 2005. Physical geography of the Gaoligong Shan area of southwest China in relation to biodiversity. Proc. Calif. Acad. Sci. 56, 527-556. Chun, J.H., Lee, C.B., 2018. Diversity patterns and phylogenetic structure of vascular plants along elevational gradients in a mountain ecosystem, South Korea. J. Mt.Sci. 15, 280-289. Condamine, F.L., Sperling, F.A., Wahlberg, N.J., et al., 2012. What causes latitudinal gradients in species diversity? Evolutionary processes and ecological constraints on swallowtail biodiversity. Ecol. Lett. 15, 267-277. Crisp, M.D., Cook, L.G., 2012. Phylogenetic niche conservatism:what are the underlying evolutionary and ecological causes? New Phytol. 196, 681-694. Culmsee, H., Leuschner, C., 2013. Consistent patterns of elevational change in tree taxonomic and phylogenetic diversity across Malesian mountain forests.J. Biogeogr. 40, 1997-2010. Donoghue, M.J., 2008. A phylogenetic perspective on the distribution of plant diversity. Proc. Natl. Acad. Sci. U. S. A. 105, 11549-11555. Fraterrigo, J.M., Wagner, S., Warren, R.J., 2014. Local-scale biotic interactions embedded in macroscale climate drivers suggest Eltonian noise hypothesis distribution patterns for an invasive grass. Ecol. Lett. 17, 1447-1454. Giehl, E.L.H., Jarenkow, J.A., 2012. Niche conservatism and the differences in species richness at the transition of tropical and subtropical climates in South America.Ecography 35, 933-943. González-Caro, S., Umana, M.N., Alvarez, E., et al., 2014. Phylogenetic alpha and beta diversity in tropical tree assemblages along regional-scale environmental gradients in northwest South America. J. Plant Ecol. 7, 145-153. Graham, A., 2011. The age and diversification of terrestrial New World ecosystem through Cretaceous and Cenozoic time. Am. J. Bot. 98, 336-351. Hawkins, B.A., Rueda, M., Rangel, T.F., et al., 2014. Community phylogenetics at the biogeographical scale:cold tolerance, niche conservatism and the structure of North American forests. J. Biogeogr. 41, 23-38. He, D.M., 1998. Comprehensive study on the Dulong river area. Yunnan Geogr.Environ. Res. 10, 8-14. Helmus, M.R., Bland, T.J., Williams, C.K., et al., 2007. Phylogenetic measures of biodiversity. Am. Nat. 169, E68-E83. Hettwer, G., Eduardo, L., Jarenkow, J.A., 2012. Niche conservatism and the differences in species richness at the transition of tropical and subtropical climates in South America. Ecography 35, 933-943. Jablonski, D., Roy, K., Valentine, J.W., 2006. Out of the tropics:evolutionary dynamics of the latitudinal diversity gradient. Science 314, 102-106. Jin, Y., Qian, H., 2019. V.PhyloMaker:an R package that can generate very large phylogenies for vascular plants. Ecography 42, 1353-1359. Jump, A.S., Matyas, C., Penuelas, J., 2009. The altitude-for-latitude disparity in the range retractions of woody species. Trends Ecol. Evol. 24, 694-701. Kembel, S.W., Cowan, P.D., Helmus, M.R., et al., 2010. Picante:R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463-1464. Körner, C., 2007. The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 22, 569-574. Latham, R.E., Ricklefs, R.E., 1993. Global patterns of tree species richness in moist forests:energy-diversity theory does not account for variation in species richness. Oikos 67, 325-333. Li, H., Li, X.H., Yang, J., 2017. Distribution pattern and ecological reasons of the richness of the Gaoligong Mountains endemic seed plants. J. West China For. Sci. 46, S58-S65. Li, R., Dao, Z.L., Ji, Y.H., et al., 2007. A floristic study on the seed plants of the northern Gaoligong Mountains in western Yunnan, China. Acta Bot. Yunnanica 29, 601-615. Li, R., Dao, Z.L., Li, H., 2011. Seed plant species diversity and conservation in the northern Gaoligong Mountains in western Yunnan, China. Mt. Res. Dev. 31, 160-165. Li, R., Kraft, N.J.B., Yu, H., et al., 2015. Seed plant phylogenetic diversity and species richness in conservation planning within a global biodiversity hotspot in eastern Asia. Conserv. Biol. 29, 1552-1562. Li, X.H., Zhu, X.X., Niu, Y., et al., 2014. Phylogenetic clustering and overdispersion for alpine plants along elevational gradient in the Hengduan Mountains Region, southwest China. J. Systemat. Evol. 52, 280-288. Lu, L.M., Mao, L.F., Yang, T., et al., 2018. Evolutionary history of the angiosperm flora of China. Nature 554, 234-238. Mittelbach, G.G., Schemske, D.W., Cornell, H.V., et al., 2007. Evolution and the latitudinal diversity gradient:speciation, extinction and biogeography. Ecol. Lett. 10, 315-331. Muellner-Riehl, A., Schnitzler, J., Kissling, W.D., et al., 2019. Origins of global mountain plant diversity:testing the mountain-geobiodiversity hypothesis.J. Biogeogr. 46, 2826-2838. Qian, H., 2014. Contrasting relationships between clade age and temperature along latitudinal versus elevational gradients for woody angiosperms in forests of South America. J. Veg. Sci. 25, 1208-1215. Qian, H., 2018. Climatic correlates of phylogenetic relatedness of woody angiosperms in forest communities along a tropic elevational gradient in South America. J. Plant Ecol. 394-400. Qian, H., Deng, T., Jin, Y., et al., 2019a. Phylogenetic dispersion and diversity in regional assemblages of seed plants in China. Proc. Natl. Acad. Sci. U. S. A 116, 23192-23201. Qian, H., Field, R., Zhang, J.L., et al., 2016. Phylogenetic structure and ecological and evolutionary determinants of species richness for angiosperm trees in forest communities in China. J. Biogeogr. 43, 603-615. Qian, H., Hao, Z.Q., Zhang, J., 2014. Phylogenetic structure and phylogenetic diversity of angiosperm assemblages in forests along an elevational gradient in Changbaishan, China. J. Plant Ecol. 7, 154-165. Qian, H., Ricklefs, R.E., 2011. Latitude, tree species diversity and the metabolic theory of ecology. Global Ecol. Biogeogr. 20, 362-365. Qian, H., Ricklefs, R.E., 2016. Out of the tropical lowlands:latitude versus elevation.Trends Ecol. Evol. 31, 738-741. Qian, H., Sandel, B., 2017. Phylogenetic structure of regional angiosperm assemblages across latitudinal and climatic gradients in North America. Global Ecol.Biogeogr. 26, 1258-1269. Qian, H., Sandel, B., Deng, T., et al., 2019b. Geophysical, evolutionary and ecological processes interact to drive phylogenetic dispersion in angiosperm assemblages along the longest elevational gradient in the world. Bot. J. Linn. Soc. 190, 333-344. Qian, H., Wang, X.H., Wang, S.L., et al., 2007. Environmental determinants of amphibian and reptile species richness in China. Ecography 30, 471-482. Qian, H., Wiens, J.J., Zhang, J., et al., 2015. Evolutionary and ecological causes of species richness patterns in North American angiosperm trees. Ecography 38, 241-250. Qian, H., Zhang, J., Hawkins, B.A., 2018. Mean family age of angiosperm tree communities and its climatic correlates along elevational and latitudinal gradients in eastern North America. J. Biogeogr. 45, 259-268. Qian, H., Zhang, Y.J., Zhang, J., et al., 2013. Latitudinal gradients in phylogenetic relatedness of angiosperm trees in North America. Global Ecol. Biogeogr. 22, 1183-1191. R Development Core Team, 2018. R:A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Rahbek, C., Borregaard, M.K., Antonelli, A., et al., 2019. Building mountain biodiversity:geological and evolutionary process. Science 365, 1114-1119. Revelle, W., 2018. Psych:Procedures for Personality and Psychological Research.Northwestern University, Evanston, Illinois, USA. Ricklefs, R.E., 1987. Community diversity:relative roles of local and regional processes. Science 235, 167-171. Ricklefs, R.E., 2006. Evolutionary diversification and the origin of the diversityenvironment relationship. Ecology 87, S3-S13. Romdal, T.S., Araujo, M.B., Rahbek, C., 2013. Life on a tropical planet:niche conservatism and the global diversity gradient. Global Ecol. Biogeogr. 22, 344-350. Sanders, N.J., Lessard, J.P., Fitzpatrick, M.C., et al., 2007. Temperature, but not productivity or geometry, predicts elevational diversity gradients in ants across spatial grains. Global Ecol. Biogeogr. 16, 640-649. Santos, B.A., Arroyo-Rodríguez, V., Moreno, C.E., et al., 2010. Edge-related loss of tree phylogenetic diversity in the severely fragmented Brazilian Atlantic forest. PLoS One 5, e12625. Savage, J.A., Cavender-Bares, J., 2012. Habitat specialization and the role of trait lability in structuring diverse willow (genus Salix) communities. Ecology 93, S138-S150. Smith, S.A., Brown, J.W., 2018. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302-314. Stephenson, N.L., Das, A.J., 2011. Common on "change in climatic water balance drive downhill shifts in plant species' optimum elevations". Science 334, 177. Symonds, M.R.E., Moussalli, A., 2011. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike's information criterion. Behav. Ecol. Sociobiol. 65, 13-21. Vetaas, O.R., Grytnes, J.A., 2002. Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Global Ecol.Biogeogr. 11, 291-301. Wang, C.Y., He, Z.R., Peng, C.M., 2013. Vegetation and Plant Research in Dulongjiang River (Upper Irrawaddy River) Watershed and Adjacent Area. Science Press, Beijing. Wang, Z., Fang, J., Tang, Z., et al., 2011. Patterns, determinants and models of woody plant diversity in China. Proc. R Soc. B Biol Sci. 278, 2122-2132. Webb, C.O., 2000. Exploring the phylogenetic structure of ecological communities:an example for rain forest trees. Am. Nat. 156, 145-155. Webb, C.O., Ackerly, D.D., Kembel, S.W., 2008. Phylocom:software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24, 2098-2100. Webb, C.O., Ackerly, D.D., McPeek, M.A., et al., 2002. Phylogenies and community ecology. Annu. Rev. Ecol. Systemat. 33, 475-505. Wiens, J.J., Ackerly, D.D., Allen, A.P., et al., 2010. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 13, 1310-1324. Wiens, J.J., Donoghue, M.J., 2004. Historical biogeography, ecology and species richness. Trends Ecol. Evol. 19, 639-644. Willis, C.G., Halina, M., Lehman, C., et al., 2010. Phylogenetic community structure in Minnesota oak savanna is influenced by spatial extent and environmental variation. Ecography 33, 565-577. Wood, S.N., 2017. Generalized Additive Models:an Introduction with R, second ed.Chapman and Hall/CRC Press. Zhang, H.X., Zhang, M.L., 2017. Spatial patterns of species diversity and phylogenetic structure of plant communities in the Tianshan Mountains, arid central Asia.Front. Plant Sci. 8, 2134. |
[1] | Li Xue, Linbo Jia, Gi-soo Nam, Yongjiang Huang, Shitao Zhang, Yuqing Wang, Zhuo Zhou, Yongsheng Chen. Involucre fossils of Carpinus, a northern temperate element, from the Miocene of China and the evolution of its species diversity in East Asia [J]. Plant Diversity, 2020, 42(03): 155-167. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||