Plant Diversity ›› 2024, Vol. 46 ›› Issue (03): 386-394.DOI: 10.1016/j.pld.2024.02.005
• Articles • Previous Articles
Yunzhen Li, Liujie Jin, Xinyu Liu, Chao He, Siteng Bi, Sulaiman Saeed, Wenhao Yan
Received:
2023-10-10
Revised:
2024-01-10
Published:
2024-05-20
Contact:
Wenhao Yan,E-mail:yanwenhao@mail.hzau.edu.cn
Supported by:
Yunzhen Li, Liujie Jin, Xinyu Liu, Chao He, Siteng Bi, Sulaiman Saeed, Wenhao Yan. Epigenetic control on transcription of vernalization genes and whole-genome gene expression profile induced by vernalization in common wheat[J]. Plant Diversity, 2024, 46(03): 386-394.
Add to citation manager EndNote|Ris|BibTeX
[1] Bolger, A.M., Lohse, M., Usadel, B. 2014. Trimmomatic:a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120, https://doi.org/10.1093/bioinformatics/btu170. [2] Chen, A., Dubcovsky, J., 2012. Wheat TILLING mutants show that the vernalization gene VRN1 down-regulates the flowering repressor VRN2 in leaves but is not essential for flowering. PLoS Genet. 8, e1003134, https://doi.org/10.1371/journal.pgen.1003134. [3] Chen, A., Li, C.X., Hu, W., et al., 2014. Phytochrome C plays a major role in the acceleration of wheat flowering under long-day photoperiod. Proc. Natl. Acad. Sci. U.S.A. 111(8), 10037-10044, https://doi.org/10.1073/pnas.1409795111. [4] Chen, Y.M., Song, W.J., Xie, X.M., et al., 2020. A collinearity-incorporating homology inference strategy for connecting emerging assemblies in the triticeae tribe as a pilot practice in the plant pangenomic era. Mol. Plant 13, 1694-1708, https://doi.org/10.1016/j.molp.2020.09.019. [5] Danyluk, J., Kane, N.A., Breton, G., et al., 2003. TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals. Plant Physiol. 132, 1849-1860, https://doi.org/10.1104/pp.103.023523. [6] Deng, W., Casao, M.C., Wang, P., et al., 2015. Direct links between the vernalization response and other key traits of cereal crops. Nat. Commun. 6, 5882, https://doi.org/10.1038/ncomms6882. [7] Diallo, A.O., Ali-Benali, M.A., Badawi, M., et al., 2012. Expression of vernalization responsive genes in wheat is associated with histone H3 trimethylation. Mol. Genet. Genom. 287, 575-590, https://doi.org/10.1007/s00438-012-0701-0. [8] Distelfeld, A., Dubcovsky, J., 2010. Characterization of the maintained vegetative phase deletions from diploid wheat and their effect on VRN2 and FT transcript levels. Mol. Genet. Genom. 283, 223-232, https://doi.org/10.1007/s00438-009-0510-2. [9] Distelfeld, A., Tranquilli, G., Li, C.X., et al., 2009. Genetic and molecular characterization of the VRN2 loci in tetraploid wheat. Plant Physiol. 149, 245-257, https://doi.org/10.1104/pp.108.129353. [10] Dobin, A., Davis, C.A., Schlesinger, F., et al. 2013. STAR:ultrafast universal RNA-seq aligner. Bioinformatics. 29, 15-21, https://doi.org/10.1093/bioinformatics/bts635. [11] Gororo, N.N., Flood, R.G., Eastwood, R.F., et al., 2001. Photoperiod and vernalization responses in Triticum turgidum×T. Tauschii synthetic hexaploid wheats. Ann. Bot. 88, 947-952, https://doi.org/10.1006/anbo.2001.1531. [12] Greenup, A.G., Sasani, S., Oliver, S.N., et al., 2010. ODDSOC2 is a MADS box floral repressor that is down-regulated by vernalization in temperate cereals. Plant Physiol. 153, 1062-1073, https://doi.org/10.1104/pp.109.152488. [13] Huan, Q., Mao, Z.W., Chong, K., et al., 2018. Global analysis of H3K4me3/H3K27me3 in Brachypodium distachyon reveals VRN3 as critical epigenetic regulation point in vernalization and provides insights into epigenetic memory. New Phytol. 219, 1373-1387, https://doi.org/10.1111/nph.15288. [14] Huan, Q., Mao, Z.W., Zhang, J.Y., et al. 2013. Transcriptome-wide analysis of vernalization reveals conserved and species-specific mechanisms in Brachypodium. J. Integr. Plant Biol. 55, 696-709, https://doi.org/10.1111/jipb.12050. [15] Inukai S., Kock, K.H., Bulyk, M.L., 2017. Transcription factor-DNA binding:beyond binding site motifs. Curr. Opin. Genet. Dev. 43, 110-119, https://doi.org/10.1016/j.gde.2017.02.007. [16] Kamran, A., Iqbal, M., Spaner, D., 2014. Flowering time in wheat (Triticum aestivum L.):a key factor for global adaptability. Euphytica 197, 1-26, https://doi.org/10.1007/s10681-014-1075-7. [17] Khan, A.R., Enjalbert, J., Marsollier, A.C., et al., 2013. Vernalization treatment induces site-specific DNA hypermethylation at the VERNALIZATION-A1(VRN-A1) locus in hexaploid winter wheat. BMC Plant Biol. 13, 209, https://doi.org/10.1186/1471-2229-13-209. [18] Kippes, N., Debernardi, J.M., Vasquez-Gross, H.A., et al., 2015. Identification of the VERNALIZATION 4 gene reveals the origin of spring growth habit in ancient wheats from South Asia. Proc. Natl. Acad. Sci. U.S.A. 112, E5401-E5410, https://doi.org/10.1073/pnas.1514883112. [19] Konopatskaia, I., Vavilova,V., Kondratenko, E.Y., et al., 2016. VRN1 genes variability in tetraploid wheat species with a spring growth habit. BMC Plant Biol. 16, 244, https://doi.org/10.1186/s12870-016-0924-z. [20] Li, B., Dewey, C.N. 2011. RSEM:accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinf. 12, 323, https://doi.org/10.1186/1471-2105-12-323. [21] Li C.X., Dubcovsky, J., 2008. Wheat FT protein regulates VRN1 transcription through interactions with FDL2. Plant J. 55, 543-554, https://doi.org/10.1111/j.1365-313X.2008.03526.x. [22] Li, C.X., Lin, H.Q., Dubcovsky, J., 2015. Factorial combinations of protein interactions generate a multiplicity of florigen activation complexes in wheat and barley. Plant J. 84, 70-82, https://doi.org/10.1111/tpj.12960. [23] Love, M.I., Huber, W., Anders, S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 550, https://doi.org/10.1186/s13059-014-0550-8. [24] Lyu, F.Y., Han, F.R., Ge, C.L., et al., 2023. OmicStudio:a composable bioinformatics cloud platform with real-time feedback that can generate high-quality graphs for publication. iMeta 2, e85, https://doi.org/10.1002/imt2.85. [25] Mizuno, N., Kinoshita, M., Kinoshita, S., et al., 2016. Loss-of-Function mutations in three homoeologous PHYTOCLOCK 1 genes in common wheat are associated with the extra-early flowering phenotype. PLoS One 11, e0165618, https://doi.org/10.1371/journal.pone.0165618. [26] Mizuno, N., Nitta, M., Sato, K., et al., 2012. A wheat homologue of PHYTOCLOCK 1 is a candidate gene conferring the early heading phenotype to einkorn wheat. Genes Genet. Syst. 87, 357-367, https://doi.org/10.1266/ggs.87.357. [27] Oliver, S.N., Finnegan, E.J., Dennis, E.S., et al., 2009. Vernalization-induced flowering in cereals is associated with changes in histone methylation at the VERNALIZATION1 gene. Proc. Natl. Acad. Sci. U.S.A. 106, 8386-8391, https://doi.org/10.1073/pnas.0903566106. [28] Park, S., Lee, C.M., Doherty, C.J., et al., 2015. Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network. Plant J. 82, 193-207, https://doi.org/10.1111/tpj.12796. [29] Pearce, S., Kippes, N., Chen A., et al., 2016. RNA-seq studies using wheat PHYTOCHROME B and PHYTOCHROME C mutants reveal shared and specific functions in the regulation of flowering and shade-avoidance pathways. BMC Plant Biol. 16, 141, https://doi.org/10.1186/s12870-016-0831-3. [30] Trevaskis, B., 2010. The central role of the VERNALIZATION1 gene in the vernalization response of cereals. Funct. Plant Biol. 37, 479-487, https://doi.org/10.1071/FP10056. [31] Wang, M., Li, Z., Zhang, Y., et al. 2021. An atlas of wheat epigenetic regulatory elements reveals subgenome divergence in the regulation of development and stress responses. Plant Cell. 33, 865-881, https://doi.org/10.1093/plcell/koab028. [32] Xie, L., Zhang, Y., Wang, K., et al., 2021. TaVrt2, an SVP-like gene, cooperates with TaVrn1 to regulate vernalization-induced flowering in wheat. New Phytol. 231, 834-848, https://doi.org/10.1111/nph.16339. [33] Xu, S.J., Chong, K., 2018. Remembering winter through vernalisation. Nat. Plants 4, 997-1009, https://doi.org/10.1038/s41477-018-0301-z. [34] Xu, S.J., Dong, Q., Deng, M., et al., 2021. The vernalization-induced long non-coding RNA VAS functions with the transcription factor TaRF2b to promote TaVRN1 expression for flowering in hexaploid wheat. Mol. Plant 14, 1525-1538, https://doi.org/10.1016/j.molp.2021.05.026. [35] Yan, L., Fu, D., Li, C., et al., 2006. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc. Natl. Acad. Sci. U.S.A. 3, 19581-19586, https://doi.org/10.1073/pnas.0607142103. [36] Yan, L., Loukoianov, A., Blechl, A., et al., 2004. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303, 1640-1644, https://doi.org/10.1073/pnas.0937399100. [37] Yan, L., Loukoianov, A., Tranquilli, G., et al., 2003. Positional cloning of the wheat vernalization gene VRN1. Proc. Natl. Acad. Sci. U.S.A. 100, 6263-6268, https://doi.org/10.1073/pnas.0937399100. [38] Zhao, L., Xie, L., Zhang, Q., et al., 2020. Integrative analysis of reference epigenomes in 20 rice varieties. Nat. Commun. 11, 2658, https://doi.org/10.1038/s41467-020-16457-5. |
[1] | Bibo Yang, Liangda Li, Jianquan Liu, Lushui Zhang. Plastome and phylogenetic relationship of the woody buckwheat Fagopyrum tibeticum in the Qinghai-Tibet Plateau [J]. Plant Diversity, 2021, 43(03): 198-205. |
[2] | Yan Zheng, Landi Luo, Yuanyuan Liu, Yunqiang Yang, Chuntao Wang, Xiangxiang Kong, Yongping Yang. Effect of vernalization on tuberization and flowering in the Tibetan turnip is associated with changes in the expression of FLC homologues [J]. Plant Diversity, 2018, 40(02): 50-56. |
[3] | CHEN Hui-Ze, ZHAI Jing-Ru, DU Mei-Ting, HAN Rong. Influence of Enhanced UV-B Radiation on F-actin in Wheat Division Cells [J]. Plant Diversity, 2011, 33(3): 306-310. |
[4] | CAI Hua , , MA Chuan-Xi, SI Hong-Qi , QIAO Yu-Qiang. Allelic Variation of Psy Gene in Chinese Wheat Micro-Core Collections [J]. Plant Diversity, 2009, 31(05): 408-414. |
[5] | CAI Hua , , MA Chuan-Xi, SI Hong-Qi , QIAO Yu-Qiang. Cloning and Molecular Characterization of Psy Gene in Wheat Yellow Pigment Biosynthesis [J]. Plant Diversity, 2008, 30(6): 693-698. |
[6] | XU Ping-Zhen , , LIU Tao , , YANG Ying , , HU Yun-Qian *. The Role of Abscisic Acid in Plant Flowering [J]. Plant Diversity, 2007, 29(02): 215-222. |
[7] | ANG Song-Hua , ZHOU Zheng-Yi , HE Qing-Yuan, Wang Xiao-Peng, SONG Li-Hong , LU Xiao-Ming. Nitric Oxide Alleviates the Nickel Toxicity in Wheat Seedlings [J]. Plant Diversity, 2007, 29(01): 115-121. |
[8] | LI Jun; WEI Hui-Ting; PENG Zheng-Song; LU Bao-Rong; YANG Wu-Yun. New Variation Identified by SSR in a Wheat Variety Derived from Synthetic Hexaploid Wheat ( Triticum durum× Aegilops tauschii) [J]. Plant Diversity, 2006, 28(05): 529-533. |
[9] | GAO Xin-Qi WANG Xiu-Ling. The Coated Vesicles in Hydrationg Pollen Grain and Pollen Tube of Buckwheat [J]. Plant Diversity, 2002, 24(02): 1-3. |
[10] | Sun Rongjin, Zhang Yulan, Yang Xiaodong. IDENTIFICATION OF CHROMOSOMAL TRANSLOCATION 4B-1D IN CV. FENGKANG NO. 13 OF COMMON WHEAT [J]. Plant Diversity, 1989, 11(03): 1-3. |
[11] | Li Cunxin, Zhang He and Lin Dehui. RESPONSE OF WINTER WHEAT TO THE CLIMATE AT DIFFERENT ALTITUDES Ⅲ. SOME PHOTOSYNTHETIC CHARACTERISTICS OF THE PLANT [J]. Plant Diversity, 1985, 7(01): 1-3. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||