Ackerly, D.D., 2003. Community assembly, niche conservatism, and adaptive evolution in changing environments. Int. J. Plant Sci. 164, S165-S184. Appanah, S., 1993. Mass flowering of dipterocarp forests in the aseasonal tropics. J. Biosci. 18, 457-474. Augspurger, C.K., Salk, C.F., 2017. Constraints of cold and shade on the phenology of spring ephemeral herb species. J. Ecol. 105, 246-254. Billings, W.D., Mooney, H.A., 1968. The ecology of arctic and alpine plants. Biol. Rev. 43, 481-529. Borchert, R., 1983. Phenology and control of flowering in tropical trees. Biotropica 15, 81-89. Borchert, R., Robertson, K., Schwartz, M.D., et al., 2005. Phenology of temperate trees in tropical climates. Int. J. Biometeorol. 50, 57-65. Brody, A.K., 1997. Effects of pollinators, herbivores, and seed predators on flowering phenology. Ecology 78, 1624-1631. CaraDonna, P.J., Iler, A.M., Inouye, D.W., 2014. Shifts in flowering phenology reshape a subalpine plant community. Proc. Natl. Acad. Sci. U.S.A. 111, 4916-4921. ChangBae, L., Chun, J.H., Cho, H.J., 2013. Elevational patterns and determinants of plant diversity in the Baekdudaegan Mountains, South Korea: species vs. functional diversity. Chin. Sci. Bull. 58, 3747-3759. Chase, J.M., Myers, J.A., 2011. Disentangling the importance of ecological niches from stochastic processes across scales. Philos. Trans. R. Soc. B-Biol. Sci. 366, 2351-2363. Chen, Z., Li, X., Song, W., et al., 2020. Small mammal species richness and turnover along elevational gradient in Yulong Mountain, Yunnan, Southwest China. Ecol. Evol. 10, 2545-2558. Chettri, B., Acharya, B.K., 2020. Distribution of amphibians along an elevation gradient in the Eastern Himalaya, India. Basic Appl. Ecol. 47, 57-70. Clark, J.S., 2009. Beyond neutral science. Trends Ecol. Evol. 24, 8-15. Cleland, E.E., Chiariello, N.R., Loarie, S.R., et al., 2006. Diverse responses of phenology to global changes in a grassland ecosystem. Proc. Natl. Acad. Sci. U.S.A. 103, 13740-13744. Colwell, R.K., 2004. RangeModel: a Monte Carlo simulation tool for assessing geometric constraints on species richness, version 5. User’s guide and application. Available at: http://viceroy.eeb.uconn.edu/RangeModel (accessed 29 March 2011). Colwell, R.K., Gotelli, N.J., Rahbek, C., et al., 2009. Peaks, plateaus, canyons, and craters: the complex geometry of simple mid-domain effect models. Evol. Ecol. Res. 11, 355-370. Colwell, R.K., Hurtt, G.C., 1994. Nonbiological gradients in species richness and a spurious Rapoport effect. Am. Nat. 144, 570-595. Colwell, R.K., Lees, D.C., 2000. The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol. Evol. 15, 70-76. Colwell, R.K., Rahbek, C., Gotelli, N.J., 2004. The mid-domain effect and species richness patterns: what have we learned so far? Am. Nat. 163, E1-E23. Craine, J.M., Wolkovich, E.M., Towne, E.G., 2012. The roles of shifting and filtering in generating community-level flowering phenology. Ecography 35, 1033-1038. Du, Y.J., Mao, L.F., Queenborough, S.A., et al., 2020. Macro-scale variation and environmental predictors of flowering and fruiting phenology in the Chinese angiosperm flora. J. Biogeogr. 47, 2303-2314. Dudgeon, D., Corlett, R.T., 1994. Hills and Streams: an Ecology of Hong Kong. Hong Kong University Press. Dunn, R.R., Parker, C.R., Sanders, N.J., 2007. Temporal patterns of diversity: assessing the biotic and abiotic controls on ant assemblages. Biol. J. Linn. Soc. 91, 191-201. Ehrlen, J., Valdes, A., 2020. Climate drives among-year variation in natural selection on flowering time. Ecol. Lett. 23, 653-662. Feng, C., Wu, Y., Tian, F., et al., 2017. Elevational diversity gradients of Tibetan loaches: the relative roles of ecological and evolutionary processes. Ecol. Evol. 7, 9970-9977. Fenner, M., 1998. The phenology of growth and reproduction in plants. Perspect. Plant Ecol. 1, 78-91. Flynn, D.F.B., Wolkovich, E.M., 2018. Temperature and photoperiod drive spring phenology across all species in a temperate forest community. New Phytol. 219, 1353-1362. Frankie, G.W., Baker, H.G., Opler, P.A., 1974. Comparative phenological studies of trees in tropical wet and dry forests in the lowlands of Costa Rica. J. Ecol. 62, 881-913. Heithaus, E.R., 1974. The role of plant-pollinator interactions in determining community structure. Ann. Mo. Bot. Gard. 61,675-691. Hubbell, S.P., 2001. The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press. Inouye, D.W., 2008. Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology 89, 353-362. Janzen DH., 1971. Seed predation by animals. Annu. Rev. Ecol. Syst. 2, 465-492. Johnson, S.D., 1993. Climatic and phylogenetic determinants of flowering seasonality in the Cape flora. J. Ecol. 81, 567-572. Kelly, D. 1994. The evolutionary ecology of mast seeding. Trends Ecol. Evol. 9, 465-470. Kochmer, J.P., Handel, S.N., 1986. Constraints and competition in the evolution of flowering phenology. Ecol. Monogr. 56, 303-325. Lai, J., Zou, Y., Zhang, S., et al., 2022. glmm.hp: an R package for computing individual effect of predictors in generalized linear mixed models. J. Plant Ecol. 15, 1302-1307. Lai, J., Zhu, W., Cui, D., et al., 2023. Extension of the glmm.hp package to zero-inflated generalized linear mixed models and multiple regression. J. Plant Ecol. 16, rtad038. Legendre, P., Mi, X., Ren, H., et al., 2009. Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology 90, 663-674. Letten, A.D., Lyons, S.K., Moles, A.T., 2013. The mid-domain effect: it's not just about space. J. Biogeogr. 40, 2017-2019. Matthews, E.R., Mazer, S.J., 2016. Historical changes in flowering phenology are governed by temperature×precipitation interactions in a widespread perennial herb in western North America. New Phytol. 210, 157-167. Morales, M.A., Dodge, G.J., Inouye, D.W., 2005. A phenological mid-domain effect in flowering diversity. Oecologia 142, 83-89. Morin, X., Chuine, I., 2006. Niche breadth, competitive strength and range size of tree species: a trade-off based framework to understand species distribution. Ecol. Lett. 9, 185-195. Norton, D.A., Kelly, D., 1988. Mast seeding over 33 years by Dacrydium cupressinum Lamb. (rimu) (Podocarpaceae) in New Zealand: the importance of economies of scale. Funct. Ecol. 2, 399-408. Panchen, Z.A., Primack, R.B., Anisko, T., et al., 2012. Herbarium specimens, photographs, and field observations show Philadelphia area plants are responding to climate change. Am. J. Bot. 99, 751-756. Pau, S., Wolkovich, E.M., Cook, B.I., et al., 2011. Predicting phenology by integrating ecology, evolution and climate science. Global Change Biol. 17, 3633-3643. Post, E., Forchhammer, M.C., Stenseth, N.C., et al., 2001. The timing of life-history events in changing climate. Proc. Roy. Soc. B-Biol. Sci. 268, 15-23. R Development Core Team, 2023. R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. http://www.Rproject.org. Rangel, T.F., Diniz-Filho, J.A., 2005. Neutral community dynamics, the mid-domain effect and spatial patterns in species richness. Ecol. Lett. 8, 783-790. Rathcke, B., Lacey, E.P., 1985. Phenological patterns of terrestrial plants. Annu. Rev. Ecol. Evol. Syst. 16, 179-214. Reich, P.B., Borchert, R., 1984. Water stress and tree phenology in a tropical dry forest in the lowlands of Costa Rica. J. Ecol. 61-74. Siqueira, C.C., Vrcibradic, D., Almeida-Gomes, M., et al., 2021. Assessing the importance of reproductive modes for the evaluation of altitudinal distribution patterns in tropical frogs. Biotropica 53, 786-797. Stevenson, P.R., Castellanos, M.C., Cortes, A.I., et al., 2008. Flowering patterns in a seasonal tropical lowland forest in western Amazonia. Biotropica 40, 559-567. Stiles, F.G., 1977. Coadapted competitors: the flowering seasons of hummingbird-pollinated plants in a tropical forest. Science 198, 1177-1178. Sun, L., Luo, J., Qian, L., et al., 2020. The relationship between elevation and seed-plant species richness in the Mt. Namjagbarwa region (Eastern Himalayas) and its underlying determinants. Glob. Ecol. Conserv. 23, e01053. Thies, W., Kalko, E.K.V., 2004. Phenology of neotropical pepper plants (Piperaceae) and their association with their main dispersers, two short-tailed fruit bats, Carollia perspicillata and C. castanea (Phyllostomidae). Oikos 104, 362-376. van Schaik, C.P., Terborgh, J.W., Wright, S.J., 1993. The phenology of tropical forests: adaptive significance and consequences for primary consumers. Annu. Rev. Ecol. Evol. Syst. 24, 353-377. Warren, B.H., Bakker, F.T., Bellstedt, D. U., et al., 2011. Consistent phenological shifts in the making of a biodiversity hotspot: the Cape flora. BMC Evol. Biol. 11, 39. Weiser, C.J., 1970. Cold resistance and injury in woody plants: knowledge of hardy plant adaptations to freezing stress may help us to reduce winter damage. Science 169, 1269-1278. Wesolowski, T., Rowinski, P., Maziarz, M., 2015. Interannual variation in tree seed production in a primeval temperate forest: does masting prevail? Eur. J. For. Res. 134, 99-112. Wright, S.J., 1996. Phenological responses to seasonality in tropical forest plants. Tropical Forest Plant Ecophysiology. Boston, MA: Springer US, pp. 440-460. Wright, S. J., Calderon, O., 1995. Phylogenetic patterns among tropical flowering phenologies. J. Ecol. 83, 937-948. Wright, S.J., van Schaik, C.P., 1994. Light and the phenology of tropical trees. Am. Nat. 143, 192-199. Xu, W.B., Svenning, J.C., Chen, G.K., et al., 2018. Plant geographical range size and climate stability in China: growth form matters. Global Ecol. Biogeogr. 27, 506-517. |