Allaby, M., 2019. A Dictionary of Plant Sciences. Oxford University Press. Banks, J.A., 2009. Selaginella and 400 million years of separation. Annu. Rev. Plant Biol. 60, 223-238. https://doi.org/10.1146/annurev.arplant.59.032607.092851. Blonder, B., Violle, C., Bentley, L.P., et al., 2011. Venation networks and the origin of the leaf economics spectrum: venation networks and leaf economics. Ecol. Lett. 14, 91-100. https://doi.org/10.1111/j.1461-0248.2010.01554.x. Carriqui, M., Roig-Oliver, M., Brodribb, T.J., et al., 2019. Anatomical constraints to nonstomatal diffusion conductance and photosynthesis in lycophytes and bryophytes. New Phytol. 222, 1256-1270. https://doi.org/10.1111/nph.15675. Copolovici, L., Niinemets, U., 2010. Flooding induced emissions of volatile signalling compounds in three tree species with differing waterlogging tolerance. Plant Cell Environ. 33, 1582-1594. https://doi.org/10.1111/j.1365-3040.2010.02166.x. Donoghue, P.C.J., Harrison, C.J., Paps, J., et al., 2021. The evolutionary emergence of land plants. Curr. Biol. 31, R1281-R1298. https://doi.org/10.1016/j.cub.2021.07.038. Dykstra, M.J., Reuss, L.E., 2003. Biological Electron Microscopy: Theory, Techniques, and Troubleshooting. Springer US, Boston, MA. https://doi.org/10.1007/978-1-4419-9244-4. Edwards, D., Wellman, C.H., Axe, L., 1998. The fossil record of early land plants and interrelationships between primitive embryophytes: too little and too late?, in: Bryology for the Twenty-First Century. Routledge, pp. 15-43. Elbert, W., Weber, B., Burrows, S., et al., 2012. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat. Geosci. 5, 459-462. https://doi.org/10.1038/ngeo1486. Flexas, J., Clemente-Moreno, M.J., Bota, J., et al., 2021. Cell wall thickness and composition are involved in photosynthetic limitation. J. Exp. Bot. 72, 3971-3986. https://doi.org/10.1093/jxb/erab144. Freschet, G.T., Cornelissen, J.H.C., van Logtestijn, R.S.P., et al., 2010. Evidence of the ‘plant economics spectrum’ in a subarctic flora. J. Ecol. 98, 362-373. https://doi.org/10.1111/j.1365-2745.2009.01615.x. Grau-Andres, R., Kardol, P., Gundale, M.J., 2022. Trait coordination in boreal mosses reveals a bryophyte economics spectrum. J. Ecol. 110, 2493-2506. https://doi.org/10.1111/1365-2745.13965. Ishizawa, H., Onoda, Y., Kitajima, K., et al., 2021. Coordination of leaf economics traits within the family of the world's fastest growing plants (Lemnaceae). J. Ecol. 109, 2950-2962. https://doi.org/10.1111/1365-2745.13710. Jansen, M.A.K., Van Den Noort, R.E., Tan, M.Y.A., et al., 2001. Phenol-oxidizing peroxidases contribute to the protection of plants from ultraviolet radiation stress. Plant Physiol. 126, 1012-1023. https://doi.org/10.1104/pp.126.3.1012. Kitajima, K., Llorens, A.-M., Stefanescu, C., et al., 2012. How cellulose-based leaf toughness and lamina density contribute to long leaf lifespans of shade-tolerant species. New Phytol. 195, 640-652. https://doi.org/10.1111/j.1469-8137.2012.04203.x. Kunstler, G., Falster, D., Coomes, D.A., et al., 2016. Plant functional traits have globally consistent effects on competition. Nature 529, 204-207. https://doi.org/10.1038/nature16476. Liu, H., Ye, Q., Simpson, K.J., et al., 2022. Can evolutionary history predict plant plastic responses to climate change? New Phytol. 235, 1260-1271. https://doi.org/10.1111/nph.18194. Morales-Sanchez, J.A., Mark, K., Talts, E., et al., 2023. Improved monitoring of cryptogam gas-exchange and volatile emissions during desiccation-rehydration cycles with a within-chamber hydration method. Plant Sci. 333, 111745. https://doi.org/10.1016/j.plantsci.2023.111745. Morris, J.L., Puttick, M.N., Clark, J.W., et al., 2018. The timescale of early land plant evolution. Proc. Natl. Acad. Sci. U.S.A. 115, E2274-E2283. https://doi.org/10.1073/pnas.1719588115. Niinemets, U., 2015. Is there a species spectrum within the world-wide leaf economics spectrum? Major variations in leaf functional traits in the Mediterranean sclerophyll Quercus ilex. New Phytol. 205, 79-96. https://doi.org/10.1111/nph.13001. Niinemets, U., 2001. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology 82, 453-469. Niinemets, U., 1999. Research review. Components of leaf dry mass per area - thickness and density - alter leaf photosynthetic capacity in reverse directions in woody plants. New Phytol. 144, 35-47. https://doi.org/10.1046/j.1469-8137.1999.00466.x. Niinemets, U., Bravo, L.A., Copolovici, L., 2018. Changes in photosynthetic rate and stress volatile emissions through desiccation-rehydration cycles in desiccation-tolerant epiphytic filmy ferns (Hymenophyllaceae). Plant Cell Environ. 41, 1605-1617. https://doi.org/10.1111/pce.13201. Niinemets, U., Tobias, M., 2019. Canopy leaf area index at its higher end: dissection of structural controls from leaf to canopy scales in bryophytes. New Phytol. 223, 118-133. https://doi.org/10.1111/nph.15767. Onoda, Y., Westoby, M., Adler, P.B., et al., 2011. Global patterns of leaf mechanical properties. Ecol. Lett. 14, 301-312. https://doi.org/10.1111/j.1461-0248.2010.01582.x. Onoda, Y., Wright, I.J., Evans, J.R., et al., 2017. Physiological and structural tradeoffs underlying the leaf economics spectrum. New Phytol. 214, 1447-1463. https://doi.org/10.1111/nph.14496. Pan, Y., Cieraad, E., Armstrong, J., et al., 2020. Global patterns of the leaf economics spectrum in wetlands. Nat. Commun. 11, 4519. https://doi.org/10.1038/s41467-020-18354-3. Pandey, V., Ranjan, S., Deeba, F., et al., 2010. Desiccation-induced physiological and biochemical changes in resurrection plant, Selaginella bryopteris. J. Plant Physiol. 167, 1351-1359. https://doi.org/10.1016/j.jplph.2010.05.001. Poorter, H., Niinemets, U., Poorter, L., et al., 2009. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol. 182, 565-588. https://doi.org/10.1111/j.1469-8137.2009.02830.x. Read, J., Sanson, G.D., 2003. Characterizing sclerophylly: the mechanical properties of a diverse range of leaf types. New Phytol. 160, 81-99. https://doi.org/10.1046/j.1469-8137.2003.00855.x. Reich, P.B., 2014. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275-301. https://doi.org/10.1111/1365-2745.12211. Reich, P.B., Flores-Moreno, H., 2017. Peeking beneath the hood of the leaf economics spectrum. New Phytol. 214, 1395-1397. https://doi.org/10.1111/nph.14594. Roberts, A., Roberts, E., Haigler, C., 2012. Moss cell walls: structure and biosynthesis. Front. Plant Sci. 3. Roos, R.E., Zuijlen, K., Birkemoe, T., et al., 2019. Contrasting drivers of community-level trait variation for vascular plants, lichens and bryophytes across an elevational gradient. Funct. Ecol. 33, 2430-2446. https://doi.org/10.1111/1365-2435.13454. Shao, J., Yuan, T., Li, Z., et al., 2019. Plant evolutionary history mainly explains the variance in biomass responses to climate warming at a global scale. New Phytol. 222, 1338-1351. https://doi.org/10.1111/nph.15695. Shipley, B., Lechowicz, M.J., Wright, I., et al., 2006. Fundamental trade-offs generating the worldwide leaf economics spectrum. Ecology 87, 535-541. https://doi.org/10.1890/05-1051. Slate, M.L., Rosenstiel, T.N., Eppley, S.M., 2017. Sex-specific morphological and physiological differences in the moss Ceratodon purpureus (Dicranales). Ann. Bot. 120, 845-854. https://doi.org/10.1093/aob/mcx071. Tosens, T., Nishida, K., Gago, J., et al., 2016. The photosynthetic capacity in 35 ferns and fern allies: mesophyll CO2 diffusion as a key trait. New Phytol. 209, 1576-1590. https://doi.org/10.1111/nph.13719. Turetsky, M.R., Bond-Lamberty, B., Euskirchen, E., et al., 2012. The resilience and functional role of moss in boreal and arctic ecosystems. New Phytol. 196, 49-67. https://doi.org/10.1111/j.1469-8137.2012.04254.x. Veromann-Jurgenson, L.-L., Brodribb, T.J., Niinemets, U., et al., 2020. Variability in the chloroplast area lining the intercellular airspace and cell walls drives mesophyll conductance in gymnosperms. J. Exp. Bot. 71, 4958-4971. https://doi.org/10.1093/jxb/eraa231. Veromann-Jurgenson, L.-L., Tosens, T., Laanisto, L., et al., 2017. Extremely thick cell walls and low mesophyll conductance: welcome to the world of ancient living! J. Exp. Bot. 68, 1639-1653. https://doi.org/10.1093/jxb/erx045. Waite, M., Sack, L., 2010. How does moss photosynthesis relate to leaf and canopy structure? Trait relationships for 10 Hawaiian species of contrasting light habitats. New Phytol. 185, 156-172. https://doi.org/10.1111/j.1469-8137.2009.03061.x. Wang, Z., Liu, X., Bader, M.Y., et al., 2017. The ‘plant economic spectrum’ in bryophytes, a comparative study in subalpine forest. Am. J. Bot. 104, 261-270. https://doi.org/10.3732/ajb.1600335. Wang, Z., Liu, X., Bao, W., 2016. Higher photosynthetic capacity and different functional trait scaling relationships in erect bryophytes compared with prostrate species. Oecologia 180, 359-369. https://doi.org/10.1007/s00442-015-3484-2. Wright, I.J., Cannon, K., 2001. Relationships between leaf lifespan and structural defences in a low-nutrient, sclerophyll flora. Funct. Ecol. 15, 351-359. https://doi.org/10.1046/j.1365-2435.2001.00522.x. Wright, I.J., Reich, P.B., Westoby, M., et al., 2004. The worldwide leaf economics spectrum. Nature 428, 821-827. https://doi.org/10.1038/nature02403. Xiong, D., Flexas, J., 2018. Leaf economics spectrum in rice: leaf anatomical, biochemical, and physiological trait trade-offs. J. Exp. Bot. 69, 5599-5609. https://doi.org/10.1093/jxb/ery322. Zhou, X.-M., Zhang, L.-B., 2023. Phylogeny, character evolution, and classification of Selaginellaceae (lycophytes). Plant Divers. 45, 630-684. https://doi.org/10.1016/j.pld.2023.07.003. |